1
|
Xuan L, Li J, Jiang Y, Shi M, Zhu Y, Bao X, Gong Q, Xue HW, Yu H, Liu L. MCTP controls nucleocytoplasmic partitioning of AUXIN RESPONSE FACTORs during lateral root development. Dev Cell 2024:S1534-5807(24)00573-2. [PMID: 39423818 DOI: 10.1016/j.devcel.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
The plant hormone auxin orchestrates almost all aspects of plant growth and development. AUXIN RESPONSE FACTORs (ARFs) control the transcription of auxin-responsive genes, forming cytoplasmic condensates to modulate auxin sensitivity and diversify auxin response regulation. However, the dynamic control of ARF distribution across different subcellular compartments remains largely obscure. Here, we show that three MULTIPLE C2 DOMAIN AND TRANSMEMBRANE REGION PROTEINs (MCTPs), MCTP3, MCTP4, and MCTP6, control ARF nucleocytoplasmic partitioning and determine lateral root development. MCTP3/4/6 are highly expressed in lateral roots and specifically interact with ARF7 and ARF19 to dissolve their cytoplasmic condensates. This promotes ARF nuclear localization in lateral root primordia and enhances auxin signaling during lateral root formation. Our findings confer MCTP as a key switch to modulate auxin responses and outline an MCTP-ARF signaling cascade that is crucial for the establishment of the plant root system.
Collapse
Affiliation(s)
- Lijie Xuan
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yupeng Jiang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meiqi Shi
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunke Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinru Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Lu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Calinsky R, Levy Y. A pH-Dependent Coarse-Grained Model for Disordered Proteins: Histidine Interactions Modulate Conformational Ensembles. J Phys Chem Lett 2024; 15:9419-9430. [PMID: 39248414 PMCID: PMC11417990 DOI: 10.1021/acs.jpclett.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Histidine (His) presents a unique challenge for modeling disordered protein conformations, as it is versatile and occurs in both the neutral (His0) and positively charged (His+) states. These His charge states, which are enabled by its imidazole side chain, influence the electrostatic and short-range interactions of His residues, which potentially engage in cation-π, π-π, and charge-charge interactions. Existing coarse-grained (CG) models often simplify His representation by assigning it an average charge, thereby neglecting these potential short-range interactions. To address this gap, we developed a model for intrinsically disordered proteins (IDPs) that accounts for the properties of histidine (H). The resulting IDPH model is a 21-amino acid CG model incorporating both His charge states. We show that interactions involving previously neglected His0 are critical for accurate modeling at high pH, where they significantly influence the compaction of His-rich IDPs such as Histatin-5 and CPEB4. These interactions contribute to structural stabilizations primarily via His0-His0 and His0-Arg interactions, which are overlooked in models focusing solely on the charged His+ state.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Calinsky R, Levy Y. Aromatic Residues in Proteins: Re-Evaluating the Geometry and Energetics of π-π, Cation-π, and CH-π Interactions. J Phys Chem B 2024; 128:8687-8700. [PMID: 39223472 PMCID: PMC11403661 DOI: 10.1021/acs.jpcb.4c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aromatic residues can participate in various biomolecular interactions, such as π-π, cation-π, and CH-π interactions, which are essential for protein structure and function. Here, we re-evaluate the geometry and energetics of these interactions using quantum mechanical (QM) calculations, focusing on pairwise interactions involving the aromatic amino acids Phe, Tyr, and Trp and the cationic amino acids Arg and Lys. Our findings reveal that π-π interactions, while energetically favorable, are less abundant in structured proteins than commonly assumed and are often overshadowed by previously underappreciated, yet prevalent, CH-π interactions. Cation-π interactions, particularly those involving Arg, show strong binding energies and a specific geometric preference toward stacked conformations, despite the global QM minimum, suggesting that a rather perpendicular T-shape conformation should be more favorable. Our results support a more nuanced understanding of protein stabilization via interactions involving aromatic residues. On the one hand, our results challenge the traditional emphasis on π-π interactions in structured proteins by showing that CH-π and cation-π interactions contribute significantly to their structure. On the other hand, π-π interactions appear to be key stabilizers in solvated regions and thus may be particularly important to the stabilization of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
5
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
6
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
7
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Basu S, Martínez-Cristóbal P, Frigolé-Vivas M, Pesarrodona M, Lewis M, Szulc E, Bañuelos CA, Sánchez-Zarzalejo C, Bielskutė S, Zhu J, Pombo-García K, Garcia-Cabau C, Zodi L, Dockx H, Smak J, Kaur H, Batlle C, Mateos B, Biesaga M, Escobedo A, Bardia L, Verdaguer X, Ruffoni A, Mawji NR, Wang J, Obst JK, Tam T, Brun-Heath I, Ventura S, Meierhofer D, García J, Robustelli P, Stracker TH, Sadar MD, Riera A, Hnisz D, Salvatella X. Rational optimization of a transcription factor activation domain inhibitor. Nat Struct Mol Biol 2023; 30:1958-1969. [PMID: 38049566 PMCID: PMC10716049 DOI: 10.1038/s41594-023-01159-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paula Martínez-Cristóbal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - C Adriana Bañuelos
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stasė Bielskutė
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jiaqi Zhu
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Levente Zodi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jordann Smak
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Harpreet Kaur
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cristina Batlle
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Alessandro Ruffoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nasrin R Mawji
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jun Wang
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jon K Obst
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Teresa Tam
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain.
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
9
|
Sigrist SJ, Haucke V. Orchestrating vesicular and nonvesicular membrane dynamics by intrinsically disordered proteins. EMBO Rep 2023; 24:e57758. [PMID: 37680133 PMCID: PMC10626433 DOI: 10.15252/embr.202357758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.
Collapse
Affiliation(s)
- Stephan J Sigrist
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Volker Haucke
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- Department of Molecular Pharmacology and Cell BiologyLeibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
10
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
11
|
Wang L, Choi K, Su T, Li B, Wu X, Zhang R, Driskill JH, Li H, Lei H, Guo P, Chen EH, Zheng Y, Pan D. Multiphase coalescence mediates Hippo pathway activation. Cell 2022; 185:4376-4393.e18. [PMID: 36318920 PMCID: PMC9669202 DOI: 10.1016/j.cell.2022.09.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyungsuk Choi
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongde Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Mi Z, Song Y, Wang J, Liu Z, Cao X, Dang L, Lu Y, Sun Y, Xiong H, Zhang L, Chen Y. cAMP-Induced Nuclear Condensation of CRTC2 Promotes Transcription Elongation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104578. [PMID: 35037420 PMCID: PMC8981427 DOI: 10.1002/advs.202104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Formation of biomolecular condensates by phase separation has recently emerged as a new principle for regulating gene expression in response to extracellular signaling. However, the molecular mechanisms underlying the coupling of signal transduction and gene activation through condensate formation, and how dysregulation of these mechanisms contributes to disease progression, remain elusive. Here, the authors report that CREB-regulated transcription coactivator 2 (CRTC2) translocates to the nucleus and forms phase-separated condensates upon activation of cAMP signaling. They show that intranuclear CRTC2 interacts with positive transcription elongation factor b (P-TEFb) and activates P-TEFb by disrupting the inhibitory 7SK snRNP complex. Aberrantly elevated cAMP signaling plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD). They find that CRTC2 localizes to the nucleus and forms condensates in cystic epithelial cells of both mouse and human ADPKD kidneys. Genetic depletion of CRTC2 suppresses cyst growth in an orthologous ADPKD mouse model. Using integrative transcriptomic and cistromic analyses, they identify CRTC2-regulated cystogenesis-associated genes, whose activation depends on CRTC2 condensate-facilitated P-TEFb recruitment and the release of paused RNA polymerase II. Together, their findings elucidate a mechanism by which CRTC2 nuclear condensation conveys cAMP signaling to transcription elongation activation and thereby promotes cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Zeyun Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yandong Song
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Jiuchen Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Xinyi Cao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yongzhan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Hui Xiong
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250001China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| |
Collapse
|
13
|
Hanselmann RG, Welter C. Origin of Cancer: Cell work is the Key to Understanding Cancer Initiation and Progression. Front Cell Dev Biol 2022; 10:787995. [PMID: 35300431 PMCID: PMC8921603 DOI: 10.3389/fcell.2022.787995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The cell is the smallest unit of life. It is a structure that maintains order through self-organization, characterized by a high level of dynamism, which in turn is characterized by work. For this work to take place, a continuous high flow of energy is necessary. However, a focused view of the physical relationship between energy and work is inadequate for describing complex biological/medical mechanisms or systems. In this review, we try to make a connection between the fundamental laws of physics and the mechanisms and functions of biology, which are characterized by self-organization. Many different physical work processes (work) in human cells are called cell work and can be grouped into five forms: synthetic, mechanical, electrical, concentration, and heat generation cell work. In addition to the flow of energy, these cell functions are based on fundamental processes of self-organization that we summarize with the term Entirety of molecular interaction (EoMI). This illustrates that cell work is caused by numerous molecular reactions, flow equilibrium, and mechanisms. Their number and interactions are so complex that they elude our perception in their entirety. To be able to describe cell functions in a biological/medical context, the parameters influencing cell work should be summarized in overarching influencing variables. These are “biological” energy, information, matter, and cell mechanics (EMIM). This makes it possible to describe and characterize the cell work involved in cell systems (e.g., respiratory chain, signal transmission, cell structure, or inheritance processes) and to demonstrate changes. If cell work and the different influencing parameters (EMIM influencing variables) are taken as the central property of the cell, specific gene mutations cannot be regarded as the sole cause for the initiation and progression of cancer. This reductionistic monocausal view does not do justice to the dynamic and highly complex system of a cell. Therefore, we postulate that each of the EMIM influencing variables described above is capable of changing the cell work and thus the order of a cell in such a way that it can develop into a cancer cell.
Collapse
|
14
|
Heinrich S, Hondele M. Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. Methods Mol Biol 2022; 2537:307-333. [PMID: 35895272 DOI: 10.1007/978-1-0716-2521-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomolecular condensates and the concept of liquid-liquid phase separation (LLPS) have transformed cell biology in recent years. Condensates organize cellular content and compartmentalize biochemical reactions, in particular many processes involving RNA. This protocol is aimed at readers new to the LLPS field who want to test their protein or cellular structure of interest. We describe the basic principles of liquid-liquid phase separation, and outline initial approaches-both in vitro and in yeast cells-for the characterization of a candidate cellular condensate. First, we focus on strategies to purify phase-separating proteins and to reconstitute condensates from recombinant proteins in vitro for observation by light microscopy. Second, we describe in vivo experiments (including fluorescence recovery after photobleaching (FRAP) microscopy and 1,6-Hexanediol treatment) to test whether a subcellular structure displays liquid-like behavior in cells.
Collapse
Affiliation(s)
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Iarovaia OV, Ioudinkova ES, Velichko AK, Razin SV. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021; 10:cells10071597. [PMID: 34202380 PMCID: PMC8303250 DOI: 10.3390/cells10071597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their exceptional simplicity of organization, viruses rely on the resources, molecular mechanisms, macromolecular complexes, regulatory pathways, and functional compartments of the host cell for an effective infection process. The nucleolus plays an important role in the process of interaction between the virus and the infected cell. The interactions of viral proteins and nucleic acids with the nucleolus during the infection process are universal phenomena and have been described for almost all taxonomic groups. During infection, proteins of the nucleolus in association with viral components can be directly used for the processes of replication and transcription of viral nucleic acids and the assembly and transport of viral particles. In the course of a viral infection, the usurpation of the nucleolus functions occurs and the usurpation is accompanied by profound changes in ribosome biogenesis. Recent studies have demonstrated that the nucleolus is a multifunctional and dynamic compartment. In addition to the biogenesis of ribosomes, it is involved in regulating the cell cycle and apoptosis, responding to cellular stress, repairing DNA, and transcribing RNA polymerase II-dependent genes. A viral infection can be accompanied by targeted transport of viral proteins to the nucleolus, massive release of resident proteins of the nucleolus into the nucleoplasm and cytoplasm, the movement of non-nucleolar proteins into the nucleolar compartment, and the temporary localization of viral nucleic acids in the nucleolus. The interaction of viral and nucleolar proteins interferes with canonical and non-canonical functions of the nucleolus and results in a change in the physiology of the host cell: cell cycle arrest, intensification or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and the modification of signaling cascades involved in the stress response. The nucleolus is, therefore, an important target during viral infection. In this review, we discuss the functional impact of viral proteins and nucleic acid interaction with the nucleolus during infection.
Collapse
|