1
|
Edington AR, Connor OM, Love AC, Marlar-Pavey M, Friedman JR. Functionally conserved inner mitochondrial membrane proteins CCDC51 and Mdm33 demarcate a subset of fission events. J Cell Biol 2025; 224:e202403140. [PMID: 39718510 DOI: 10.1083/jcb.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear whether internal mitochondrial proteins in metazoans play a direct role in the process. Previously, the yeast inner membrane protein Mdm33 was shown to be required for normal mitochondrial morphology and has been hypothesized to be involved in mitochondrial fission. However, it is unknown whether Mdm33 plays a direct role, and it is not thought to have a mammalian homolog. Here, we use a bioinformatic approach to identify a structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK), whose depletion phenocopies loss of Mdm33. We find that knockdown of CCDC51 also leads to reduced rates of mitochondrial fission. Further, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 overexpression promotes its spatial association with Drp1 and induces mitochondrial fragmentation, suggesting it is a positive effector of mitochondrial fission. Together, our data reveal that Mdm33 and CCDC51 are functionally conserved and suggest that internal mitochondrial proteins are directly involved in at least a subset of mitochondrial fission events in human cells.
Collapse
Affiliation(s)
- Alia R Edington
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olivia M Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abigail C Love
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Ji Y, Lin Y, He J, Xie Y, An W, Luo X, Qiao X, Li Z. Research progress of mitochondria and cytoskeleton crosstalk in tumour development. Biochim Biophys Acta Rev Cancer 2024; 1880:189254. [PMID: 39732178 DOI: 10.1016/j.bbcan.2024.189254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
During tumour progression, organelle function undergoes dramatic changes, and crosstalk among organelles plays a significant role. Crosstalk between mitochondria and other organelles such as the endoplasmic reticulum and cytoskeleton has focussed attention on the mechanisms of tumourigenesis. This review demonstrates an overview of the molecular structure of the mitochondrial-cytoskeletal junction and its biological interactions. It also presents a detailed and comprehensive description of mitochondrial-cytoskeletal crosstalk in tumour occurrence and development, including tumour cell proliferation, apoptosis, autophagy, metabolic rearrangement, and metastasis. Finally, the application of crosstalk in tumour therapy, including drug combinations and chemoresistance, is discussed. This review offers a theoretical basis for establishing mitochondrial-cytoskeletal junctions as therapeutic targets, and offers novel insights into the future management of malignant tumours.
Collapse
Affiliation(s)
- Yue Ji
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Yingchi Lin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, China
| | - Jing He
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning Province, China
| | - Yuanyuan Xie
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Wenmin An
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xinyu Luo
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| |
Collapse
|
4
|
Cheng C, Chen M, Sun J, Xu J, Deng S, Xia J, Han Y, Zhang X, Wang J, Lei L, Zhai R, Wu Q, Fang W, Song H. The MICOS Complex Subunit Mic60 is Hijacked by Intracellular Bacteria to Manipulate Mitochondrial Dynamics and Promote Bacterial Pathogenicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406760. [PMID: 39431455 PMCID: PMC11633497 DOI: 10.1002/advs.202406760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Host mitochondria undergo fission and fusion, which bacteria often exploit for their infections. In this study, the underlying molecular mechanisms are aimed to clarify through which Listeria monocytogenes (L. monocytogenes), a human bacterial pathogen, manipulates mitochondrial dynamics to enhance its pathogenicity. It is demonstrated that L. monocytogenes triggers transient mitochondrial fission through its virulence factor listeriolysin O (LLO), driven by LLO's interaction with Mic60, a core component of the mitochondrial contact site and the cristae organizing system (MICOS). Specifically, Phe251 within LLO is identify as a crucial residue for binding to Mic60, crucial for LLO-induced mitochondrial fragmentation and bacterial pathogenicity. Importantly, it is that Mic60 affect the formation of F-actin tails recruited by L. monocytogenes, thereby contributing to intracellular bacterial infection. Mic60 plays a critical role in mediating changes in mitochondrial morphology, membrane potential, and reactive oxidative species (ROS) production, and L. monocytogenes infection exacerbates these changes by affecting Mic60 expression. These findings unveil a novel mechanism through which intracellular bacteria exploit host mitochondria, shedding light on the complex interplay between hosts and microbes during infections. This knowledge holds promise for developing innovative strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Changyong Cheng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Yue Han
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Qin Wu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| |
Collapse
|
5
|
Fernández Casafuz AB, Brigante AMA, De Rossi MAC, Monastra AG, Bruno L. Deciphering the intracellular forces shaping mitochondrial motion. Sci Rep 2024; 14:23914. [PMID: 39397143 PMCID: PMC11471753 DOI: 10.1038/s41598-024-74734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
We propose a novel quantitative method to explore the forces affecting mitochondria within living cells in an almost non-invasive fashion. This new tool enables the detection of localized mechanical impulses on these organelles that occur amidst the stationary fluctuations caused by the thermal jittering in the cytoplasm. Recent experimental evidence shows that the action of mechanical forces has important effects on the dynamics, morphology and distribution of mitochondria in cells. In particular, their crosstalk with the cytoskeleton has been found to alter these organelles function; however, the mechanisms underlying this phenomenon are largely unknown. Our results highlight the different functions that cytoskeletal networks play in shaping mitochondrial dynamics. This work presents a novel technique to extend our knowledge of how the impact of mechanical cues can be quantified at the single organelle level. Moreover, this approach can be expanded to the study of other organelles or biopolymers.
Collapse
Affiliation(s)
- Agustina Belén Fernández Casafuz
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
| | - Azul Marí A Brigante
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, 1428, Argentina
| | - Marí A Cecilia De Rossi
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, 1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandro Gabriel Monastra
- Universidad Nacional de General Sarmiento, Instituto de Ciencias, Los Polvorines, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Bruno
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother 2024; 178:117084. [PMID: 39088967 DOI: 10.1016/j.biopha.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
The accumulation of excess reactive oxygen species (ROS) can lead to oxidative stress (OS), which can induce gene mutations, protein denaturation, and lipid peroxidation directly or indirectly. The expression is reduced ATP level in cells, increased cytoplasmic Ca2+, inflammation, and so on. Consequently, ROS are recognized as significant risk factors for human aging and various diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria are involved in the production of ROS through the respiratory chain. Abnormal mitochondrial characteristics, including mitochondrial OS, mitochondrial fission, mitochondrial fusion, and mitophagy, play an important role in various tissues. However, previous excellent reviews focused on OS-induced diseases. In this review, we focus on the latest progress of OS-induced mitochondrial dynamics, discuss OS-induced mitochondrial damage-related diseases, and summarize the OS-induced mitochondrial dynamics-related signaling pathways. Additionally, it elaborates on potential therapeutic methods aimed at preventing oxidative stress from further exacerbating mitochondrial disorders.
Collapse
Affiliation(s)
- Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjing Shi
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
8
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
El-Gohary RM, Abdeen A, Ibrahim HA, Taher ES, Ghabrial MM, Younis RL, Khattab H, Seleem MA, Alwutayed KM, Mihaela O, Ioan BD, El-Nablaway M, Aldarmahi AA, Ibrahim AM, Al-Serwi RH, Ghalwash AA. Empagliflozin impact on experimentally induced acetaminophen toxicity: Imprint of mitochondrial dynamics, biogenesis, and cGAS/STING signal in amending liver insult. FASEB J 2024; 38:e23816. [PMID: 39072779 DOI: 10.1096/fj.202400254rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-β, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.
Collapse
Affiliation(s)
- Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Maram M Ghabrial
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham L Younis
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Monira A Seleem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Khairiah M Alwutayed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ostan Mihaela
- Department of Biology, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timisoara, Timisoara, Romania
| | - Banatean-Dunea Ioan
- Department of Biology, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timisoara, Timisoara, Romania
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- National Guard- Health Affairs, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Ateya M Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Rasha H Al-Serwi
- Department of Basic Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asmaa A Ghalwash
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Peñalva DA, Monnappa AK, Natale P, López-Montero I. Mfn2-dependent fusion pathway of PE-enriched micron-sized vesicles. Proc Natl Acad Sci U S A 2024; 121:e2313609121. [PMID: 39012824 PMCID: PMC11287154 DOI: 10.1073/pnas.2313609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.
Collapse
Affiliation(s)
- Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
| | - Ajay K. Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
| | - Paolo Natale
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| |
Collapse
|
11
|
Preminger N, Schuldiner M. Beyond fission and fusion-Diving into the mysteries of mitochondrial shape. PLoS Biol 2024; 22:e3002671. [PMID: 38949997 PMCID: PMC11216622 DOI: 10.1371/journal.pbio.3002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.
Collapse
Affiliation(s)
- Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Wu Z, Xiao C, Li F, Huang W, You F, Li X. Mitochondrial fusion-fission dynamics and its involvement in colorectal cancer. Mol Oncol 2024; 18:1058-1075. [PMID: 38158734 PMCID: PMC11076987 DOI: 10.1002/1878-0261.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The incidence and mortality rates of colorectal cancer have elevated its status as a significant public health concern. Recent research has elucidated the crucial role of mitochondrial fusion-fission dynamics in the initiation and progression of colorectal cancer. Elevated mitochondrial fission or fusion activity can contribute to the metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that drive cell proliferation, invasion, migration, and drug resistance. Nevertheless, excessive mitochondrial fission can induce apoptosis, whereas moderate mitochondrial fusion can protect cells from oxidative stress. This imbalance in mitochondrial dynamics can exert dual roles as both promoters and inhibitors of colorectal cancer progression. This review provides an in-depth analysis of the fusion-fission dynamics and the underlying pathological mechanisms in colorectal cancer cells. Additionally, it offers partial insights into the mitochondrial kinetics in colorectal cancer-associated cells, such as immune and endothelial cells. This review is aimed at identifying key molecular events involved in colorectal cancer progression and highlighting the potential of mitochondrial dynamic proteins as emerging targets for pharmacological intervention.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Institute of OncologyChengdu University of Traditional Chinese MedicineChina
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| |
Collapse
|
13
|
Liu Y, Wang YJ, Du Y, Liu W, Huang X, Fan Z, Lu J, Yi R, Xiang XW, Xia X, Gu H, Liu YJ, Liu B. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution. Proc Natl Acad Sci U S A 2024; 121:e2317492121. [PMID: 38547056 PMCID: PMC10998588 DOI: 10.1073/pnas.2317492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Runqiu Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xiao-Wei Xiang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
14
|
Edington AR, Connor OM, Marlar-Pavey M, Friedman JR. Human CCDC51 and yeast Mdm33 are functionally conserved mitochondrial inner membrane proteins that demarcate a subset of organelle fission events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586162. [PMID: 38562768 PMCID: PMC10983960 DOI: 10.1101/2024.03.21.586162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that exist in a semi-continuous network. Mitochondrial morphology arises from the complex interplay of numerous processes, including opposing fission and fusion dynamics and the formation of highly organized cristae invaginations of the inner membrane. While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear how fission is coordinated across two membrane bilayers and how mitochondrial inner membrane organization is coupled with mitochondrial fission dynamics. Previously, the yeast protein Mdm33 was implicated in facilitating fission by coordinating with inner membrane homeostasis pathways. However, Mdm33 is not conserved outside fungal species and its precise mechanistic role remains unclear. Here, we use a bioinformatic approach to identify a putative structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK). We find that the mitochondrial phenotypes associated with altered CCDC51 levels implicate the protein in mitochondrial fission dynamics. Further, using timelapse microscopy, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 can partially rescue yeast Δmdm33 cells, indicating the proteins are functionally analogous. Our data reveal that Mdm33/CCDC51 are conserved mediators of mitochondrial morphology and suggest the proteins play a crucial role in maintaining normal mitochondrial dynamics and organelle homeostasis.
Collapse
Affiliation(s)
- Alia R Edington
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Olivia M Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Zheng X, Chu B. The biology of mitochondrial carrier homolog 2. Mitochondrion 2024; 75:101837. [PMID: 38158152 DOI: 10.1016/j.mito.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial carrier system is in charge of small molecule transport between the mitochondria and the cytoplasm as well as being an integral portion of the core mitochondrial function. One member of the mitochondrial carrier family of proteins, mitochondrial carrier homolog 2 (MTCH2), is characterized as a critical mitochondrial outer membrane protein insertase participating in mitochondrial homeostasis. Accumulating evidence demonstrate that MTCH2 is integrally linked to cell death and mitochondrial metabolism, and its genetic alterations cause a variety of disease phenotypes, ranging from obesity, Alzheimer's disease, and tumor. To provide a comprehensive insight into the current understanding of MTCH2, we present a detailed description of the physiopathological functions of MTCH2, ranging from apoptosis, mitochondrial dynamics, and metabolic homeostasis regulation. Moreover, we summarized the impact of MTCH2 in human diseases, and highlighted tumors, to assess the role of MTCH2 mutations or variable expression on pathogenesis and target therapeutic options.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China.
| |
Collapse
|
16
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
17
|
He SY, Liu RP, Wang CR, Wang XQ, Wang J, Xu YN, Kim NH, Han DW, Li YH. Improving the developmental competences of porcine parthenogenetic embryos by Notoginsenoside R1-induced enhancement of mitochondrial activity and alleviation of proapoptotic events. Reprod Domest Anim 2023; 58:1583-1594. [PMID: 37696770 DOI: 10.1111/rda.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 μM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.
Collapse
Affiliation(s)
- Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
18
|
Grichine A, Jacob S, Eckly A, Villaret J, Joubert C, Appaix F, Pezet M, Ribba AS, Denarier E, Mazzega J, Rinckel JY, Lafanechère L, Elena-Herrmann B, Rowley JW, Sadoul K. The fate of mitochondria during platelet activation. Blood Adv 2023; 7:6290-6302. [PMID: 37624769 PMCID: PMC10589785 DOI: 10.1182/bloodadvances.2023010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.
Collapse
Affiliation(s)
- Alexei Grichine
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Shancy Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Anita Eckly
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Joran Villaret
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Clotilde Joubert
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Florence Appaix
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- INSERM U1216, Commissariat à l'Energie Atomique, Grenoble Institute of Neuroscience, University Grenoble Alpes, Grenoble, France
| | - Jacques Mazzega
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jean-Yves Rinckel
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Laurence Lafanechère
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Bénédicte Elena-Herrmann
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Karin Sadoul
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
19
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Harvey DC, Verma R, Sedaghat B, Hjelm BE, Morton SU, Seidman JG, Kumar SR. Mutations in genes related to myocyte contraction and ventricular septum development in non-syndromic tetralogy of Fallot. Front Cardiovasc Med 2023; 10:1249605. [PMID: 37840956 PMCID: PMC10569225 DOI: 10.3389/fcvm.2023.1249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.
Collapse
Affiliation(s)
- Drayton C. Harvey
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Riya Verma
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Sedaghat
- Department of Medicine, Rosalind Franklin University School of Medicine and Science, Chicago, IL, United States
| | - Brooke E. Hjelm
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah U. Morton
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Jon G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - S. Ram Kumar
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
21
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
22
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
23
|
Xiong Y, Leng Y, Tian H, Deng X, Li W, Li W, Xia Z. Decreased MFN2 activates the cGAS-STING pathway in diabetic myocardial ischaemia-reperfusion by triggering the release of mitochondrial DNA. Cell Commun Signal 2023; 21:192. [PMID: 37537600 PMCID: PMC10398939 DOI: 10.1186/s12964-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The cause of aggravation of diabetic myocardial damage is yet to be elucidated; damage to mitochondrial function has been a longstanding focus of research. During diabetic myocardial ischaemia-reperfusion (MI/R), it remains unclear whether reduced mitochondrial fusion exacerbates myocardial injury by generating free damaged mitochondrial DNA (mitoDNA) and activating the cGAS-STING pathway. METHODS In this study, a mouse model of diabetes was established (by feeding mice a high-fat diet (HFD) plus a low dose of streptozotocin (STZ)), a MI/R model was established by cardiac ischaemia for 2 h and reperfusion for 30 min, and a cellular model of glycolipid toxicity induced by high glucose (HG) and palmitic acid (PA) was established in H9C2 cells. RESULTS We observed that altered mitochondrial dynamics during diabetic MI/R led to increased mitoDNA in the cytosol, activation of the cGAS-STING pathway, and phosphorylation of the downstream targets TBK1 and IRF3. In the cellular model we found that cytosolic mitoDNA was the result of reduced mitochondrial fusion induced by HG and PA, which also resulted in cGAS-STING signalling and activation of downstream targets. Moreover, inhibition of STING by H-151 significantly ameliorated myocardial injury induced by MFN2 knockdown in both the cell and mouse models. The use of a fat-soluble antioxidant CoQ10 improved cardiac function in the mouse models. CONCLUSIONS Our study elucidated the critical role of cGAS-STING activation, triggered by increased cytosolic mitoDNA due to decreased mitochondrial fusion, in the pathogenesis of diabetic MI/R injury. This provides preclinical insights for the treatment of diabetic MI/R injury. Video Abstract.
Collapse
Affiliation(s)
- Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
25
|
Tamada H. Three-dimensional ultrastructure analysis of organelles in injured motor neuron. Anat Sci Int 2023; 98:360-369. [PMID: 37071350 PMCID: PMC10256651 DOI: 10.1007/s12565-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantitatively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
26
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|