1
|
Sturgess W, Packirisamy S, Geneidy R, Nordenfelt P, Swaminathan V. ECM-dependent regulation of septin 7 in focal adhesions promotes mechanosensing and functional response in fibroblasts. iScience 2024; 27:111355. [PMID: 39650732 PMCID: PMC11625310 DOI: 10.1016/j.isci.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/29/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Fibroblasts are adherent cells that maintain tissue homeostasis by sensing and responding to the extracellular matrix (ECM). Focal adhesions (FAs) link these ECM changes to actomyosin dynamics through changes in its composition, influencing cellular response. Septin-7 (Sept-7) has previously been found in FA proteomics studies and shown to influence ECM sensing. Using total internal reflection microscopy, we found that ECM-mediated integrin activation regulates spatially distinct Sept-7 structures in FAs. In perinuclear regions, ECM binding stabilized Sept-7 bundles at the back of FAs, while in the core of peripheral FAs high integrin activation promoted elongation of Sept-7 structures. Ventral Sept-7 structures were crucial for ECM sensing, impacting region-specific FA elongation, stabilization, and contributing to fibroblast mechanosensitivity. Taken together, our results suggest that ECM and integrin-dependent regulation of ventral Sept-7 structures plays a pivotal role in fibroblast ECM sensing and mechanotransduction through its recruitment and assembly into FA subpopulations.
Collapse
Affiliation(s)
- Wesley Sturgess
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rodina Geneidy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund Universty, Lund, Sweden
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Maddala R, Gorijavolu P, Lankford LK, Skiba NP, Challa P, Singh RK, Nair KS, Choquet H, Rao PV. Dysregulation of septin cytoskeletal organization in the trabecular meshwork contributes to ocular hypertension. JCI Insight 2024; 9:e179468. [PMID: 39641270 PMCID: PMC11623952 DOI: 10.1172/jci.insight.179468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Ocular hypertension, believed to result partly from increased contractile activity, cell adhesive interactions, and stiffness within the trabecular meshwork (TM), is a major risk factor for glaucoma, a leading cause of blindness. However, the identity of molecular mechanisms governing organization of actomyosin and cell adhesive interactions in the TM remains limited. Based on our previous findings, in which proteomics analyses revealed elevated levels of septins, including septin-9 in human TM cells treated with the ocular hypertensive agent dexamethasone, here, we evaluated the effects of septin-9 overexpression, deficiency, and pharmacological targeting in TM cells. These studies demonstrated a profound impact on actomyosin organization, cell adhesion, contraction, and phagocytosis. Overexpression raised intraocular pressure (IOP) in mice, while inhibition increased cell permeability. In addition, we replicated a significant association between a common variant (rs9038) in SEPT9 with IOP in the Genetic Epidemiology Research on Adult Healthy and Aging (GERA) cohort. Collectively, these data reveal a link between dysregulated septin cytoskeletal organization in the TM and increased IOP, likely due to enhanced cell contraction, adhesive interactions, and fibrotic activity. This suggests that targeting the septin cytoskeleton could offer a novel approach for lowering IOP in patients with glaucoma.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pallavi Gorijavolu
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Levi K. Lankford
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - K. Saidas Nair
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, USA
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Chauvière A, Manifacier I, Verdier C, Chagnon G, Cheddadi I, Glade N, Stéphanou A. A biomechanical model for cell sensing and migration. Comput Methods Biomech Biomed Engin 2024:1-19. [PMID: 39535176 DOI: 10.1080/10255842.2024.2427112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.
Collapse
Affiliation(s)
- Arnaud Chauvière
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ian Manifacier
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Claude Verdier
- LIPhy, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Grégory Chagnon
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ibrahim Cheddadi
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Nicolas Glade
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Angélique Stéphanou
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| |
Collapse
|
4
|
Li C, Niu Y, Chen J, Geng S, Wu P, Dai L, Dong C, Liu R, Shi Y, Wang X, Gao Z, Liu X, Yang X, Gao S. Plexin D1 negatively regulates macrophage-derived foam cell migration via the focal adhesion kinase/Paxillin pathway. Biochem Biophys Res Commun 2024; 725:150236. [PMID: 38897039 DOI: 10.1016/j.bbrc.2024.150236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.
Collapse
Affiliation(s)
- Chenlei Li
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yan Niu
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Jie Chen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Shijia Geng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Peng Wu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Lina Dai
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Chongyang Dong
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Rujin Liu
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yuanjia Shi
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaomeng Wang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Zhanfeng Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaoyu Liu
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xi Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Shang Gao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
5
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
6
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Jing D. Deciphering the dynamics: Exploring the impact of mechanical forces on histone acetylation. FASEB J 2024; 38:e23849. [PMID: 39096133 DOI: 10.1096/fj.202400907rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Living cells navigate a complex landscape of mechanical cues that influence their behavior and fate, originating from both internal and external sources. At the molecular level, the translation of these physical stimuli into cellular responses relies on the intricate coordination of mechanosensors and transducers, ultimately impacting chromatin compaction and gene expression. Notably, epigenetic modifications on histone tails govern the accessibility of gene-regulatory sites, thereby regulating gene expression. Among these modifications, histone acetylation emerges as particularly responsive to the mechanical microenvironment, exerting significant control over cellular activities. However, the precise role of histone acetylation in mechanosensing and transduction remains elusive due to the complexity of the acetylation network. To address this gap, our aim is to systematically explore the key regulators of histone acetylation and their multifaceted roles in response to biomechanical stimuli. In this review, we initially introduce the ubiquitous force experienced by cells and then explore the dynamic alterations in histone acetylation and its associated co-factors, including HDACs, HATs, and acetyl-CoA, in response to these biomechanical cues. Furthermore, we delve into the intricate interactions between histone acetylation and mechanosensors/mechanotransducers, offering a comprehensive analysis. Ultimately, this review aims to provide a holistic understanding of the nuanced interplay between histone acetylation and mechanical forces within an academic framework.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Essebier P, Keyser M, Yordanov T, Hill B, Yu A, Noordstra I, Yap AS, Stehbens SJ, Lagendijk AK, Schimmel L, Gordon EJ. c-Src-induced vascular malformations require localised matrix degradation at focal adhesions. J Cell Sci 2024; 137:jcs262101. [PMID: 38881365 PMCID: PMC11267457 DOI: 10.1242/jcs.262101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.
Collapse
Affiliation(s)
- Patricia Essebier
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Mikaela Keyser
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Teodor Yordanov
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Brittany Hill
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alexander Yu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Samantha J. Stehbens
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Anne K. Lagendijk
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Emma J. Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| |
Collapse
|
8
|
Hui G, Xie Y, Niu L, Liu J. A novel gene signature related to focal adhesions for distinguishing and predicting the prognosis of lung squamous cell carcinoma. Front Med (Lausanne) 2024; 10:1284490. [PMID: 38259849 PMCID: PMC10800788 DOI: 10.3389/fmed.2023.1284490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a devastating and difficult-to-treat type of lung cancer, and the prognosis of LUSC is the worst. The functional roles of focal adhesion-related genes were explored in LUSC based on data from The Cancer Genome Atlas (TCGA). Methods RNA sequencing data and clinical characteristics of LUSC patients in TCGA-LUSC were obtained from the TCGA database. Through systematic analysis, we screened the prognostic genes and determined the focal adhesion-related pathways closely associated with LUSC. Results We identified 444 prognostic genes and focal adhesion-related pathways intimately associated with LUSC. According to the focal adhesion-related genes, TCGA-LUSC patients were well divided into two groups: the low-risk group (G1) and the high-risk group (G2). A differential expression analysis identified 44 differentially expressed genes (DEGs) upregulated in the low-risk G1 group and 379 DEGs upregulated in the high-risk G2 group. The upregulated DEGs in the G1 group were primarily related to tyrosine metabolism, steroid hormone biosynthesis, retinol metabolism, platinum drug resistance, pentose and glucuronate interconversions, and metabolism of xenobiotics by cytochrome P450, while the downregulated DEGs in the G1 group were primarily related to ECM-receptor interaction, focal adhesion, proteoglycans in cancer, small cell lung cancer, cytokine-cytokine receptor interaction, and TGF-beta signaling pathway. The immune activity of the G1 group was lower than that of the G2 group, and the half-maximal inhibitory concentration (IC50) of five chemotherapy drugs (i.e., gemcitabine, methotrexate, vinorelbine, paclitaxel, and cisplatin) was significantly different between the G1 and G2 groups. Furthermore, a 10-gene prognostic model was constructed to predict the prognosis for LUSC patients: ITGA3, VAV2, FLNC, FLT4, HGF, MYL2, ITGB1, PDGFRA, CCND2, and PPP1CB. Conclusion The status of focal adhesion-related genes has a close relationship with tumor classification and immunity in LUSC patients. A novel focal adhesion-related signature had good prognostic and predictive performance for LUSC. Our findings may provide new insight into the diagnosis and treatment of LUSC.
Collapse
Affiliation(s)
- Gang Hui
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuancai Xie
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Niu
- Shenzhen Cheerland Biotechnology Co., Ltd., Southern University of Science and Technology, Shenzhen, China
- CheerLand Clinical Laboratory Co., Ltd., Peking University Medical Industrial Park, Beijing, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Kast DJ, Jansen S. Purification of modified mammalian actin isoforms for in vitro reconstitution assays. Eur J Cell Biol 2023; 102:151363. [PMID: 37778219 PMCID: PMC10872616 DOI: 10.1016/j.ejcb.2023.151363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.
Collapse
Affiliation(s)
- David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| |
Collapse
|
10
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Thapa N, Wen T, Cryns VL, Anderson RA. Regulation of Cell Adhesion and Migration via Microtubule Cytoskeleton Organization, Cell Polarity, and Phosphoinositide Signaling. Biomolecules 2023; 13:1430. [PMID: 37892112 PMCID: PMC10604632 DOI: 10.3390/biom13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity for cancer cells to metastasize to distant organs depends on their ability to execute the carefully choreographed processes of cell adhesion and migration. As most human cancers are of epithelial origin (carcinoma), the transcriptional downregulation of adherent/tight junction proteins (e.g., E-cadherin, Claudin and Occludin) with the concomitant gain of adhesive and migratory phenotypes has been extensively studied. Most research and reviews on cell adhesion and migration focus on the actin cytoskeleton and its reorganization. However, metastasizing cancer cells undergo the extensive reorganization of their cytoskeletal system, specifically in originating/nucleation sites of microtubules and their orientation (e.g., from non-centrosomal to centrosomal microtubule organizing centers). The precise mechanisms by which the spatial and temporal reorganization of microtubules are linked functionally with the acquisition of an adhesive and migratory phenotype as epithelial cells reversibly transition into mesenchymal cells during metastasis remains poorly understood. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we highlight cell adhesion and migration from the perspectives of microtubule cytoskeletal reorganization, cell polarity and phosphoinositide signaling.
Collapse
Affiliation(s)
- Narendra Thapa
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Tianmu Wen
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Vincent L. Cryns
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| |
Collapse
|
12
|
Espina JA, Cordeiro MH, Milivojevic M, Pajić-Lijaković I, Barriga EH. Response of cells and tissues to shear stress. J Cell Sci 2023; 136:jcs260985. [PMID: 37747423 PMCID: PMC10560560 DOI: 10.1242/jcs.260985] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Shear stress is essential for normal physiology and malignancy. Common physiological processes - such as blood flow, particle flow in the gut, or contact between migratory cell clusters and their substrate - produce shear stress that can have an impact on the behavior of different tissues. In addition, shear stress has roles in processes of biomedical interest, such as wound healing, cancer and fibrosis induced by soft implants. Thus, understanding how cells react and adapt to shear stress is important. In this Review, we discuss in vivo and in vitro data obtained from vascular and epithelial models; highlight the insights these have afforded regarding the general mechanisms through which cells sense, transduce and respond to shear stress at the cellular levels; and outline how the changes cells experience in response to shear stress impact tissue organization. Finally, we discuss the role of shear stress in collective cell migration, which is only starting to be appreciated. We review our current understanding of the effects of shear stress in the context of embryo development, cancer and fibrosis, and invite the scientific community to further investigate the role of shear stress in these scenarios.
Collapse
Affiliation(s)
- Jaime A. Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Marilia H. Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, 11120 Belgrade, Serbia
| | | | - Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| |
Collapse
|
13
|
Pontes B, Mendes FA. Mechanical Properties of Glioblastoma: Perspectives for YAP/TAZ Signaling Pathway and Beyond. Diseases 2023; 11:86. [PMID: 37366874 DOI: 10.3390/diseases11020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease.
Collapse
Affiliation(s)
- Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fabio A Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
14
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|