Thomas RC. The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded.
J Physiol 2008;
587:315-27. [PMID:
19064619 PMCID:
PMC2670047 DOI:
10.1113/jphysiol.2008.162453]
[Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The coupling between Ca2+ extrusion and H+ uptake by the ubiquitous plasma membrane calcium ATPase (PMCA) has not been measured in any neurone. I have investigated this with Ca2+- and pH-sensitive microelectrodes in large voltage-clamped snail neurones, which have no Na+-Ca2+ exchangers. The recovery of [Ca2+]i and surface pH after a brief depolarization or Ca2+ injection was not slowed by hyperpolarization to -90 mV from a holding potential of -50 mV, consistent with a 1 Ca2+ : 2 H+ coupling ratio. Since Ca2+ injections proved difficult to quantify, and Ca2+ currents through channels were obscured by K+ currents, Ba2+ was used as a substitute. When the cell was bathed in Ca2+-free Ba2+ Ringer solution, the K+ currents were blocked and large inward currents were revealed on depolarization. The Ca2+-sensitive microelectrodes were sensitive to intracellular Ba2+ as well as Ca2+. With equal depolarizations Ba2+ entry appeared larger than Ca2+ entry and generated similar but slower pH changes. Ba2+ extrusion was insensitive to hyperpolarization, blocked by eosin or high pH, and about 5 times slower than Ca2+ extrusion. The ratio of the pH change caused by the extrusion of unit charge of Ba2+ influx to that caused by unit charge of H+ injection was 0.85 +/- 0.08 (s.e.m., n = 8), corresponding to a Ba2+ : H+ ratio of 1 : 1.7. Both this ratio and the electroneutrality of the PMCA suggest that the Ca2+ : H+ ratio is 1 : 2, ensuring that after a Ca2+ influx [Ca2+]i recovery is not influenced by the membrane potential and maximizes the conversion of Ca2+ influxes into possible pH signals.
Collapse