1
|
Rocha DG, Holanda TM, Braz HLB, de Moraes JAS, Marinho AD, Maia PHF, de Moraes MEA, Fechine-Jamacaru FV, de Moraes Filho MO. Vasorelaxant effect of Alpinia zerumbet's essential oil on rat resistance artery involves blocking of calcium mobilization. Fitoterapia 2023; 169:105623. [PMID: 37500018 DOI: 10.1016/j.fitote.2023.105623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Alpinia zerumbet is a plant from the Zingiberaceae family, popularly used for hypertension treatment. Several studies have demonstrated Alpinia zerumbet vasodilator effect on conductance vessels but not on resistance vessels. Thereby, the aim of this study was to verify the vasodilator effect of the essential oil of Alpinia zerumbet (EOAz) on isolated rat resistance arteries and characterize its mechanism of action. Therefore, the effect of EOAz (3 to 3000 μg/mL) was verified in second-order branches of the mesenteric artery (SOBMA) pre-contracted by KCl and U46619. To study the mechanism of action, the influence of several inhibitors (TEA, 4-AP, Glibenclamide, Atropine, L-NAME, ODQ and indomethacin) on the vasodilator effect of EOAz was evaluated. Some protocols were also performed aiming to study the effect of EOAz on Ca2+ influx and release from intracellular storage. Furthermore, the binding energy of the main constituents with calcium channels were evaluated by molecular docking. Results showed an endothelium-independent vasorelaxant effect of EOAz on SOBMA, and only ODQ and L-NAME produced significant alteration on its pEC50. Regarding the calcium assays, contraction reduction caused by incubation with EOAz was observed in all three protocols. Hence, our results suggest that EOAz has a vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway.
Collapse
Affiliation(s)
- Danilo Galvão Rocha
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil.
| | - Thais Muratori Holanda
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - João Alison Silveira de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Freitas Maia
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Maria Elisabete Amaral de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Francisco Vagnaldo Fechine-Jamacaru
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| |
Collapse
|
2
|
Liu B, Zhang B, Roos CM, Zeng W, Zhang H, Guo R. Upregulation of Orai1 and increased calcium entry contribute to angiotensin II-induced human coronary smooth muscle cell proliferation: Running Title: Angiotensin II-induced human coronary smooth muscle cells proliferation. Peptides 2020; 133:170386. [PMID: 32827590 DOI: 10.1016/j.peptides.2020.170386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Angiotensin II (Ang II) is an oligopeptide of the renin-angiotensin system, and Ang II-induced vascular smooth muscle cell (VSMC) proliferation is an important pathophysiological process involved in atherosclerosis; however, the underlying mechanism remains unclear. Orai1 and Stim1 are the main components of store-operated Ca2+ entry (SOCE), which has an important effect on VSMC proliferation. In the present study, we showed that Ang II-induced human coronary smooth muscle cell (HCSMC) proliferation was associated with increased calcium entry. The expression of Orai1, but not that of Stim1, was significantly upregulated in Ang II-treated HCSMCs. However, knockdown of Orai1 or Stim1 decreased HCSMC proliferation and SOCE activity in Ang II-treated HCSMCs. Orai1 was significantly downregulated in HCSMCs transfected with short interfering RNA (siRNA) against NOX2 or NF-κB. Transfection with siRNA against NOX2 or p65 also decreased Ang II-induced HCSMCs SOCE activation and proliferation. These findings suggested that Ang II upregulated Orai1 via the NF-κB and NOX2 pathways, leading to increased SOCE and HCSMC proliferation. The molecular factors mediating Ang II-induced SOCE upregulation are potential therapeutic targets for the prevention of Ang II-sensitive or Ang II-dependent HCSMC proliferation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Bin Zhang
- Division of Cardiovascular Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Carolyn M Roos
- Division of Cardiovascular Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Wenjun Zeng
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Haiping Zhang
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Ruiwei Guo
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China.
| |
Collapse
|
3
|
Jedidi S, Aloui F, Rtibi K, Sammari H, Selmi H, Rejeb A, Toumi L, Sebai H. Individual and synergistic protective properties of Salvia officinalis decoction extract and sulfasalazine against ethanol-induced gastric and small bowel injuries. RSC Adv 2020; 10:35998-36013. [PMID: 35517119 PMCID: PMC9056994 DOI: 10.1039/d0ra03265d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The present study was carried out to determine the phytochemical composition of Salvia officinalis flowers decoction extract (SOFDE) as well as its individual and/or synergistic actions with sulfasalazine against ethanol (EtOH)-induced peptic ulcer in Wistar rats. In this respect, rats were divided into six groups of eight animals each: control, EtOH, EtOH + sulfasalazine (SULF, 100 mg kg-1, b.w., p.o.), mixture: MIX (SOFDE, 50 mg kg-1 b.w., p.o. + SULF, 50 mg kg-1, b.w., p.o.) and EtOH + two doses of SOFDE (100 and 200 mg kg-1 b.w., p.o.). In vitro, the phytochemical and the antioxidant properties were determined using colorimetric analysis. HPLC-PDA/ESI-MS assay was used to identify the distinctive qualitative profile of phenolic compounds. Our results firstly indicated that SOFDE is rich in total tannins, flavonols, anthocyanins and a moderate concentration of total carotenoids. Chromatographic techniques allowed the identification of 13 phenolic compounds and the major ones are quinic acid, protocatechuic acid, gallic acid and salviolinic acid. SOFDE also exhibited an important in vitro antioxidant activity using the β-carotene bleaching method. In vivo, SOFDE and the mixture provide significant protection against ethanol-induced gastric and duodenal macroscopic and histological alterations. Also, SOFDE alone or in combination with SULF, showed a significant protection against the secretory profile disturbances, lipid peroxidation, antioxidant enzyme activities and non-enzymatic antioxidant level depletion induced by alcohol administration. Importantly, we showed that EtOH acute intoxication increased gastric and intestinal calcium, free iron, magnesium and hydrogen peroxide (H2O2) levels, while SOFDE/MIX treatment protected against all these intracellular mediators' deregulation. We also showed that alcohol treatment significantly increased the C-reactive protein (CRP) and alkaline phosphatase (ALP) activities in plasma. The SOFDE and MIX treatment significantly protected against alcohol-induced inflammation. More importantly, we showed in the present work that the mixture exerted a more important effect than SOFDE and SULF each alone indicating a possible synergism between these two molecules. In conclusion, our data suggests that SOFDE and SULF exerted a potential synergistic protective effect against all the macroscopic, histological and biochemical disturbances induced by EtOH intoxication. This protection might be related in part to its antioxidant and anti-inflammatory properties as well as by negatively regulating Fenton reaction components such as H2O2 and free iron.
Collapse
Affiliation(s)
- Saber Jedidi
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Université de Jendouba, Institut Superieur de Biotechnologie de Beja Avenue Habib Bourguiba, B.P. 382 9000 Beja Tunisia +216 78 459 098 +216 97 249 486.,Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka B.P. 345 8110 Tabarka Tunisia.,Universite de Carthage, Faculté des Sciences de Bizerte 7021 Jarzouna Tunisia
| | - Foued Aloui
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka B.P. 345 8110 Tabarka Tunisia
| | - Kais Rtibi
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Université de Jendouba, Institut Superieur de Biotechnologie de Beja Avenue Habib Bourguiba, B.P. 382 9000 Beja Tunisia +216 78 459 098 +216 97 249 486
| | - Houcem Sammari
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka B.P. 345 8110 Tabarka Tunisia
| | - Houcine Selmi
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka B.P. 345 8110 Tabarka Tunisia
| | - Ahmed Rejeb
- Laboratoire d'Anatomie Pathologique, Université de Manouba, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet 2020 Sidi Thabet Tunisia
| | - Lamjed Toumi
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka B.P. 345 8110 Tabarka Tunisia
| | - Hichem Sebai
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Université de Jendouba, Institut Superieur de Biotechnologie de Beja Avenue Habib Bourguiba, B.P. 382 9000 Beja Tunisia +216 78 459 098 +216 97 249 486
| |
Collapse
|
4
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
5
|
Culp DJ, Zhang Z, Evans RL. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca 2+ pool. Pflugers Arch 2020; 472:385-403. [PMID: 31932898 DOI: 10.1007/s00424-020-02348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 μM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.
Collapse
Affiliation(s)
- David J Culp
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Oral Biology, UF College of Dentistry, P.O. Box 100424, Gainesville, FL, 32610-3003, USA.
| | - Z Zhang
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - R L Evans
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Unilever Research & Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| |
Collapse
|
6
|
Importance of Altered Levels of SERCA, IP 3R, and RyR in Vascular Smooth Muscle Cell. Biophys J 2017; 112:265-287. [PMID: 28122214 DOI: 10.1016/j.bpj.2016.11.3206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Calcium cycling between the sarcoplasmic reticulum (SR) and the cytosol via the sarco-/endoplasmic reticulum Ca-ATPase (SERCA) pump, inositol-1,4,5-triphosphate receptor (IP3R), and Ryanodine receptor (RyR), plays a major role in agonist-induced intracellular calcium ([Ca2+]cyt) dynamics in vascular smooth muscle cells (VSMC). Levels of these calcium handling proteins in SR get altered under disease conditions. We have developed a mathematical model to understand the significance of altered levels of SERCA, IP3R, and RyR on the intracellular calcium dynamics of VSMC and to understand how variation in protein levels that arise due to diabetes contribute to different VSMC behavior and thus vascular disease. SR is modeled as a single continuous entity with homogeneous intra-SR calcium. Model results show that agonist-induced intracellular calcium dynamics can be modified by changing the levels of SERCA, IP3R, and/or RyR. Lowering SERCA level will enable intracellular calcium oscillations at low agonist concentrations whereas lowered levels of IP3R and RyR need higher agonist concentration for intracellular calcium oscillations. This research suggests that reduced SERCA level is the main factor responsible for the reduced intracellular calcium transients and contractility in VSMCs.
Collapse
|
7
|
Sandison ME, Dempster J, McCarron JG. The transition of smooth muscle cells from a contractile to a migratory, phagocytic phenotype: direct demonstration of phenotypic modulation. J Physiol 2016; 594:6189-6209. [PMID: 27393389 PMCID: PMC5088226 DOI: 10.1113/jp272729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
Key points Smooth muscle cell (SMC) phenotypic conversion from a contractile to a migratory phenotype is proposed to underlie cardiovascular disease but its contribution to vascular remodelling and even its existence have recently been questioned. Tracking the fate of individual SMCs is difficult as no specific markers of migratory SMCs exist. This study used a novel, prolonged time‐lapse imaging approach to continuously track the behaviour of unambiguously identified, fully differentiated SMCs. In response to serum, highly‐elongated, contractile SMCs initially rounded up, before spreading and migrating and these migratory cells displayed clear phagocytic activity. This study provides a direct demonstration of the transition of fully contractile SMCs to a non‐contractile, migratory phenotype with phagocytic capacity that may act as a macrophage‐like cell.
Abstract Atherosclerotic plaques are populated with smooth muscle cells (SMCs) and macrophages. SMCs are thought to accumulate in plaques because fully differentiated, contractile SMCs reprogramme into a ‘synthetic’ migratory phenotype, so‐called phenotypic modulation, whilst plaque macrophages are thought to derive from blood‐borne myeloid cells. Recently, these views have been challenged, with reports that SMC phenotypic modulation may not occur during vascular remodelling and that plaque macrophages may not be of haematopoietic origin. Following the fate of SMCs is complicated by the lack of specific markers for the migratory phenotype and direct demonstrations of phenotypic modulation are lacking. Therefore, we employed long‐term, high‐resolution, time‐lapse microscopy to track the fate of unambiguously identified, fully‐differentiated, contractile SMCs in response to the growth factors present in serum. Phenotypic modulation was clearly observed. The highly elongated, contractile SMCs initially rounded up, for 1–3 days, before spreading outwards. Once spread, the SMCs became motile and displayed dynamic cell‐cell communication behaviours. Significantly, they also displayed clear evidence of phagocytic activity. This macrophage‐like behaviour was confirmed by their internalisation of 1 μm fluorescent latex beads. However, migratory SMCs did not uptake acetylated low‐density lipoprotein or express the classic macrophage marker CD68. These results directly demonstrate that SMCs may rapidly undergo phenotypic modulation and develop phagocytic capabilities. Resident SMCs may provide a potential source of macrophages in vascular remodelling. Smooth muscle cell (SMC) phenotypic conversion from a contractile to a migratory phenotype is proposed to underlie cardiovascular disease but its contribution to vascular remodelling and even its existence have recently been questioned. Tracking the fate of individual SMCs is difficult as no specific markers of migratory SMCs exist. This study used a novel, prolonged time‐lapse imaging approach to continuously track the behaviour of unambiguously identified, fully differentiated SMCs. In response to serum, highly‐elongated, contractile SMCs initially rounded up, before spreading and migrating and these migratory cells displayed clear phagocytic activity. This study provides a direct demonstration of the transition of fully contractile SMCs to a non‐contractile, migratory phenotype with phagocytic capacity that may act as a macrophage‐like cell.
Collapse
Affiliation(s)
- Mairi E Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John Dempster
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
8
|
Caldwell ST, Cairns AG, Olson M, Chalmers S, Sandison M, Mullen W, McCarron JG, Hartley RC. Synthesis of an azido-tagged low affinity ratiometric calcium sensor. Tetrahedron 2015; 71:9571-9578. [PMID: 26709317 PMCID: PMC4660056 DOI: 10.1016/j.tet.2015.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 μM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation–oxidation–cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
Collapse
Affiliation(s)
- Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marnie Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mairi Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Gordienko D, Povstyan O, Sukhanova K, Raphaël M, Harhun M, Dyskina Y, Lehen'kyi V, Jama A, Lu ZL, Skryma R, Prevarskaya N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res 2014; 105:131-42. [PMID: 25514930 DOI: 10.1093/cvr/cvu249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. METHODS AND RESULTS We compared the expression of pertinent genes and P2XR-linked Ca(2+) entry and Ca(2+) release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca(2+) entry and Ca(2+) release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca(2+) load. The SR Ca(2+) load reduction is caused by attenuated Ca(2+) uptake via down-regulated sarco-/endoplasmic reticulum Ca(2+)-ATPase 2b and elevated Ca(2+) leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca(2+)-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. CONCLUSIONS Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.
Collapse
Affiliation(s)
- Dmitri Gordienko
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleksandr Povstyan
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Khrystyna Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maylis Raphaël
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Maksym Harhun
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Yulia Dyskina
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - V'yacheslav Lehen'kyi
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Abdirahman Jama
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Zhi-Liang Lu
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Roman Skryma
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Natalia Prevarskaya
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| |
Collapse
|
10
|
Xin W, Li N, Cheng Q, Fernandes VS, Petkov GV. Constitutive PKA activity is essential for maintaining the excitability and contractility in guinea pig urinary bladder smooth muscle: role of the BK channel. Am J Physiol Cell Physiol 2014; 307:C1142-50. [PMID: 25318105 DOI: 10.1152/ajpcell.00167.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elevation of protein kinase A (PKA) activity activates the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in urinary bladder smooth muscle (UBSM) cells and consequently attenuates spontaneous phasic contractions of UBSM. However, the role of constitutive PKA activity in UBSM function has not been studied. Here, we tested the hypothesis that constitutive PKA activity is essential for controlling the excitability and contractility of UBSM. We used patch clamp electrophysiology, line-scanning confocal and ratiometric fluorescence microscopy on freshly isolated guinea pig UBSM cells, and isometric tension recordings on freshly isolated UBSM strips. Pharmacological inhibition of the constitutive PKA activity with H-89 or PKI 14-22 significantly reduced the frequency and amplitude of spontaneous transient BK channel currents (TBKCs) in UBSM cells. Confocal and ratiometric fluorescence microscopy studies revealed that inhibition of constitutive PKA activity with H-89 reduced the frequency and amplitude of the localized Ca(2+) sparks but increased global Ca(2+) levels and the magnitude of Ca(2+) oscillations in UBSM cells. H-89 abolished the spontaneous transient membrane hyperpolarizations and depolarized the membrane potential in UBSM cells. Inhibition of PKA with H-89 or KT-5720 also increased the amplitude and muscle force of UBSM spontaneous phasic contractions. This study reveals the novel concept that constitutive PKA activity is essential for controlling localized Ca(2+) signals generated by intracellular Ca(2+) stores and cytosolic Ca(2+) levels. Furthermore, constitutive PKA activity is critical for mediating the spontaneous TBKCs in UBSM cells, where it plays a key role in regulating spontaneous phasic contractions in UBSM.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Ning Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and Department of Urology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiuping Cheng
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Vitor S Fernandes
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
11
|
Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill-Eubanks DC, Nelson MT, Earley S. A PLCγ1-dependent, force-sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 2014; 7:ra49. [PMID: 24866019 DOI: 10.1126/scisignal.2004732] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4. We provide evidence that the activation of the γ1 isoform of phospholipase C (PLCγ1) is critical for pressure sensing in cerebral arteries. Inositol 1,4,5-trisphosphate (IP3), generated by PLCγ1 in response to pressure, sensitized IP3 receptors (IP3Rs) to Ca(2+) influx mediated by the mechanosensitive TRPC6 channel, synergistically increasing IP3R-mediated Ca(2+) release to activate TRPM4 currents, leading to smooth muscle depolarization and constriction of isolated cerebral arteries. Proximity ligation assays demonstrated colocalization of PLCγ1 and TRPC6 with TRPM4, suggesting the presence of a force-sensitive, local signaling network comprising PLCγ1, TRPC6, TRPM4, and IP3Rs. Src tyrosine kinase activity was necessary for stretch-induced TRPM4 activation and myogenic constriction, consistent with the ability of Src to activate PLCγ isoforms. We conclude that contraction of cerebral artery smooth muscle cells requires the integration of pressure-sensing signaling pathways and their convergence on IP3Rs, which mediate localized Ca(2+)-dependent depolarization through the activation of TRPM4.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA. Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Ying Yang
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lindsey Sanders
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Fabrice Dabertrand
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA. Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
12
|
Sukhanova KY, Thugorka OM, Bouryi VA, Harhun MI, Gordienko DV. Mechanisms of the sarcoplasmic reticulum Ca2+ release induced by P2X receptor activation in mesenteric artery myocytes. Pharmacol Rep 2014; 66:363-72. [PMID: 24905510 DOI: 10.1016/j.pharep.2013.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/09/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αβ-meATP (10 μM) in single SMCs from these vessels. METHODS The effects of inhibition of L-type Ca(2+) channels (VGCCs), RyRs and IP3Rs (5 μM nicardipine, 100 μM tetracaine and 30 μM 2-APB, respectively) on αβ-meATP-induced [Ca(2+)]i transients were analyzed using fast x-y confocal Ca(2+) imaging. RESULTS The effect of IP3R inhibition on the [Ca(2+)]i transient was significantly stronger (67 ± 7%) than that of RyR inhibition (40 ± 5%) and was attenuated by block of VGCCs. The latter indicates that activation of VGCCs is linked to IP3R-mediated Ca(2+) release. Immunostaining of RyRs and IP3Rs revealed that RyRs are located mainly in deeper sarcoplasmic reticulum (SR) while sub-plasma membrane (PM) SR elements are enriched with type 1 IP3Rs. This structural peculiarity makes IP3Rs more accessible to Ca(2+) entering the cell via VGCCs. Thus, IP3Rs may serve as an "intermediate amplifier" between voltage-gated Ca(2+) entry and RyR-mediated Ca(2+) release. CONCLUSIONS P2X receptor activation in mesenteric artery SMCs recruits IP3Rs-mediated Ca(2+) release from sub-PM SR, which is facilitated by activation of VGCCs. Sensitivity of IP3R-mediated release to VGCC antagonists in vascular SMCs makes this mechanism of special therapeutic significance.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - Oleksandr M Thugorka
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Vitali A Bouryi
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maksym I Harhun
- Division of Biomedical Sciences, St. George's, University of London, London, UK
| | - Dmitri V Gordienko
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine; Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.
| |
Collapse
|
13
|
Ewart MA, Kennedy S, Macmillan D, Raja ALN, Watt IM, Currie S. Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis. Atherosclerosis 2014; 234:154-61. [PMID: 24657385 PMCID: PMC3997800 DOI: 10.1016/j.atherosclerosis.2014.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 01/29/2014] [Accepted: 02/18/2014] [Indexed: 02/07/2023]
Abstract
Objectives Relaxation of vascular smooth muscle (VSM) requires re-uptake of cytosolic Ca2+ into the sarcoplasmic reticulum (SR) via the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA), or extrusion via the Plasma Membrane Ca2+ ATPase (PMCA) or sodium Ca2+ exchanger (NCX). Peroxynitrite, a reactive species formed in vascular inflammatory diseases, upregulates SERCA activity to induce relaxation but, chronically, can contribute to atherogenesis and altered vascular function by escalating endoplasmic reticulum stress. Our objectives were to determine if peroxynitrite-induced relaxation and Ca2+ handling processes within vascular smooth muscle cells were altered as atherosclerosis develops. Methods Aortae from control and ApoE−/− mice were studied histologically, functionally and for protein expression levels of SERCA and PMCA. Ca2+ responses were assessed in dissociated aortic smooth muscle cells in the presence and absence of extracellular Ca2+. Results Relaxation to peroxynitrite was concentration-dependent and endothelium-independent. The abilities of the SERCA blocker thapsigargin and the PMCA inhibitor carboxyeosin to block this relaxation were altered during fat feeding and plaque progression. SERCA levels were progressively reduced, while PMCA expression was upregulated. In ApoE−/− VSM cells, increases in cytosolic Ca2+ [Ca2+]c in response to SERCA blockade were reduced, while SERCA-independent Ca2+ clearance was faster compared to control. Conclusion As atherosclerosis develops in the ApoE−/− mouse, expression and function of Ca2+ handling proteins are altered. Up-regulation of Ca2+ removal via PMCA may offer a potential compensatory mechanism to help normalise the dysfunctional relaxation observed during disease progression. Expression and function of SERCA and PMCA are temporally altered in ApoE−/− VSM. TG-induced increases in [Ca2+]c were reduced in ApoE−/− aortic SM cells. Ca2+ extrusion is upregulated in isolated ApoE−/− aortic SM cells.
Collapse
Affiliation(s)
- Marie-Ann Ewart
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK.
| | - Simon Kennedy
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Debbi Macmillan
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - Abhirami L N Raja
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Ian M Watt
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| |
Collapse
|
14
|
Sukhanova KY, Harhun MI, Bouryi VA, Gordienko DV. Mechanisms of [Ca2+]i elevation following P2X receptor activation in the guinea-pig small mesenteric artery myocytes. Pharmacol Rep 2013; 65:152-63. [PMID: 23563033 DOI: 10.1016/s1734-1140(13)70973-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/24/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is growing evidence suggesting involvement of L-type voltage-gated Ca2+ channels (VGCCs) in purinergic signaling mechanisms. However, detailed interplay between VGCCs and P2X receptors in intracellular Ca2+ mobilization is not well understood. This study examined relative contribution of the Ca2+ entry mechanisms and induced by this entry Ca2+ release from the intracellular stores engaged by activation of P2X receptors in smooth muscle cells (SMCs) from the guinea-pig small mesenteric arteries. METHODS P2X receptors were stimulated by the brief local application of αβ-meATP and changes in [Ca2+]i were monitored in fluo-3 loaded SMCs using fast x-y confocal Ca2+ imaging. The effects of the block of L-type VGCCs and/or depletion of the intracellular Ca2+ stores on αβ-meATP-induced [Ca2+]i transients were analyzed. RESULTS Our analysis revealed that Ca2+ entry via L-type VGCCs is augmented by the Ca2+-induced Ca2+ release significantly more than Ca2+ entry via P2X receptors, even though net Ca2+ influxes provided by the two mechanisms are not significantly different. CONCLUSIONS Thus, arterial SMCs upon P2X receptor activation employ an effective mechanism of the Ca2+ signal amplification, the major component of which is the Ca2+ release from the SR activated by Ca2+ influx via L-type VGCCs. This signaling pathway is engaged by depolarization of the myocyte membrane resulting from activation of P2X receptors, which, being Ca2+ permeable, per se form less effective Ca2+ signaling pathway. This study, therefore, rescales potential targets for therapeutic intervention in purinergic control of vascular tone.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, A.A. Bogomoletz, Institute of Physiology, Bogomoletz 4, Kiev, 01024, Ukraine.
| | | | | | | |
Collapse
|
15
|
Esfandiarei M, Fameli N, Choi YYH, Tehrani AY, Hoskins JG, van Breemen C. Waves of calcium depletion in the sarcoplasmic reticulum of vascular smooth muscle cells: an inside view of spatiotemporal Ca2+ regulation. PLoS One 2013; 8:e55333. [PMID: 23408969 PMCID: PMC3567057 DOI: 10.1371/journal.pone.0055333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/20/2012] [Indexed: 01/24/2023] Open
Abstract
Agonist-stimulated smooth muscle Ca2+ waves regulate blood vessel tone and vasomotion. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were stimulated by a combination of inositol 1,4,5-trisphosphate- and Ca2+-induced Ca2+ release from the endo/sarcoplasmic reticulum. Herein, we present the first report of endothelin-1 stimulated waves of Ca2+ depletion from the sarcoplasmic reticulum of vascular smooth muscle cells using a calsequestrin-targeted Ca2+ indicator. Our findings confirm that these waves are due to regenerative Ca2+-induced Ca2+ release by the receptors for inositol 1,4,5-trisphosphate. Our main new finding is a transient elevation in SR luminal Ca2+ concentration ([Ca2+]SR) both at the site of wave initiation, just before regenerative Ca2+ release commences, and at the advancing wave front, during propagation. This strongly suggests a role for [Ca2+]SR in the activation of inositol 1,4,5-trisphosphate receptors during agonist-induced calcium waves. In addition, quantitative analysis of the gradual decrease in the velocity of the depletion wave, observed in the absence of external Ca2+, indicates continuity of the lumen of the sarcoplasmic reticulum network. Finally, our observation that the depletion wave was arrested by the nuclear envelope may have implications for selective Ca2+ signalling.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Child & Family Research Institute, Department of Anaesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Combined calcium fluorescence recording with ionic currents in contractile cells. Methods Mol Biol 2012; 937:149-60. [PMID: 23007584 DOI: 10.1007/978-1-62703-086-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Measurement of calcium (Ca(2+)) fluorescence in conjunction with ionic currents is of particular importance in contractile cells, such as cardiac ventricular myocytes and vascular smooth muscle. The interplay between membrane potential and intracellular calcium ([Ca(2+)](i)) is fundamental to the regulation of contractile function and cell signalling. Here the loading of cells either with an esterified fluorescence indicator prior to patch clamp recording, or dye loading via the patch pipette with "free" indicator, is described to allow simultaneous measurement of fluorescence and electrical signals.
Collapse
|
17
|
MacMillan D, Kennedy C, McCarron JG. ATP inhibits Ins(1,4,5)P3-evoked Ca2+ release in smooth muscle via P2Y1 receptors. J Cell Sci 2012; 125:5151-8. [PMID: 22899721 PMCID: PMC5704898 DOI: 10.1242/jcs.108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenosine 5′-triphosphate (ATP) mediates a variety of biological functions following nerve-evoked release, via activation of either G-protein-coupled P2Y- or ligand-gated P2X receptors. In smooth muscle, ATP, acting via P2Y receptors (P2YR), may act as an inhibitory neurotransmitter. The underlying mechanism(s) remain unclear, but have been proposed to involve the production of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] by phospholipase C (PLC), to evoke Ca2+ release from the internal store and stimulation of Ca2+-activated potassium (KCa) channels to cause membrane hyperpolarization. This mechanism requires Ca2+ release from the store. However, in the present study, ATP evoked transient Ca2+ increases in only ~10% of voltage-clamped single smooth muscle cells. These results do not support activation of KCa as the major mechanism underlying inhibition of smooth muscle activity. Interestingly, ATP inhibited Ins(1,4,5)P3-evoked Ca2+ release in cells that did not show a Ca2+ rise in response to purinergic activation. The reduction in Ins(1,4,5)P3-evoked Ca2+ release was not mimicked by adenosine and therefore, cannot be explained by hydrolysis of ATP to adenosine. The reduction in Ins(1,4,5)P3-evoked Ca2+ release was, however, also observed with its primary metabolite, ADP, and blocked by the P2Y1R antagonist, MRS2179, and the G protein inhibitor, GDPβS, but not by PLC inhibition. The present study demonstrates a novel inhibitory effect of P2Y1R activation on Ins(1,4,5)P3-evoked Ca2+ release, such that purinergic stimulation acts to prevent Ins(1,4,5)P3-mediated increases in excitability in smooth muscle and promote relaxation.
Collapse
Affiliation(s)
- D MacMillan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | | | | |
Collapse
|
18
|
Guo RW, Yang LX, Li MQ, Pan XH, Liu B, Deng YL. Stim1- and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 2011; 93:360-70. [PMID: 22108917 DOI: 10.1093/cvr/cvr307] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Despite the fact that angiotensin (Ang) II is a critical regulator of the proliferation and migration of vascular smooth muscle cells (VSMCs), the effect of Ang II on VSMC proliferation has remained unclear. In this study, we determined whether Stim1- and Orai1-mediated store-operated calcium (Ca(2+)) entry (SOCE) plays a critical role in Ang II-induced VSMC proliferation and Ang II-accelerated neointimal growth after balloon injury of rat carotid arteries. METHODS AND RESULTS Knockdown of Stim1 and Orai1, putative calcium sensors/modulators, suppressed Ang II-mediated Ca(2+) entry and cell proliferation in synthetic VSMCs. Stim1 and Orai1 short interfering RNAs (siRNAs) decreased neointimal growth induced by Ang II in balloon-injured rat carotid arteries. Ang II significantly increased the expression of Stim1 and Orai1 in neointima. In addition, our results showed that receptor subtype-1 (AT1) significantly contributed to Ang II-induced Ca(2+) entry and proliferation of synthetic VSMCs. However, we found that transient receptor potential canonical 1 (Trpc1) had no effect on Ang II-induced SOCE or cell proliferation of synthetic VSMCs. CONCLUSIONS We show for the first time that Stim1- and Orai1-mediated SOCE may be critical for Ang II-induced VSMC proliferation. This provides important information with respect to targeting cardiovascular diseases under the enhanced renin-Ang system.
Collapse
Affiliation(s)
- Rui-wei Guo
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, Yunnan 650032, China
| | | | | | | | | | | |
Collapse
|
19
|
Xue JH, Chen LH, Zhao HZ, Pu YD, Feng HZ, Ma YG, Ma J, Chang YM, Zhang ZM, Xie MJ. Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PLoS One 2011; 6:e19775. [PMID: 21611118 PMCID: PMC3097196 DOI: 10.1371/journal.pone.0019775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/05/2011] [Indexed: 01/15/2023] Open
Abstract
Background The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca2+ determined by the alterations in the functions of plasma membrane CaL channels and ryanodine-sensitive Ca2+ releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. Methodology/Principal Findings Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of CaL channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca2+ releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of CaL channels and ryanodine-sensitive Ca2+ releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of CaL channels and ryanodine-sensitive Ca2+ releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of CaL channels and ryanodine-sensitive Ca2+ releases to their control levels in cerebral and small mesenteric VSMCs, respectively. Conclusions The differential regulation of CaL channels and ryanodine-sensitive Ca2+ releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca2+, which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance.
Collapse
Affiliation(s)
- Jun-Hui Xue
- Department of Aerospace Clinical Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lian-Hong Chen
- Department of Chest Surgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hua-Zhou Zhao
- 309 Clinical Divisions, Department of General Surgery, General Hospital of PLA, Beijing, China
| | - Yong-Dong Pu
- 309 Clinical Divisions, Department of General Surgery, General Hospital of PLA, Beijing, China
| | - Han-Zhong Feng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu-Guang Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yao-Ming Chang
- Department of Aerospace Clinical Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zuo-Ming Zhang
- Department of Aerospace Clinical Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (Z-MZ); (M-JX)
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (Z-MZ); (M-JX)
| |
Collapse
|
20
|
Povstyan OV, Harhun MI, Gordienko DV. Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries. Br J Pharmacol 2011; 162:1618-38. [PMID: 21175582 PMCID: PMC3057298 DOI: 10.1111/j.1476-5381.2010.01169.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 11/04/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca(2+) concentration ([Ca(2+) ](i) ). Although it is well-appreciated that the myocyte Ca(2+) signalling system is composed of microdomains, little is known about the structure of the [Ca(2+) ](i) responses induced by P2X receptor stimulation in vascular myocytes. EXPERIMENTAL APPROACHES Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca(2+) signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP). KEY RESULTS RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP(3) R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca(2+) ](i) transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L(-1) αβ-meATP triggered an abrupt Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum enriched with IP(3) Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca(2+) channels (VGCCs) or IP(3) Rs suppressed the sub-plasmalemmal [Ca(2+) ](i) upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP(3) R inhibition on the sub-plasmalemmal [Ca(2+) ](i) upstroke was attenuated following block of VGCCs. CONCLUSIONS AND IMPLICATIONS Depolarization of RVSMCs following P2X receptor activation induces IP(3) R-mediated Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum, which is activated mainly by Ca(2+) influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kidney/blood supply
- Male
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Purinergic P2X Receptor Agonists/pharmacology
- Rats
- Rats, Inbred WKY
- Receptors, Purinergic P2X/metabolism
- Renal Artery/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Sarcoplasmic Reticulum/metabolism
Collapse
Affiliation(s)
- Oleksandr V Povstyan
- Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | | | | |
Collapse
|