1
|
Ma J, Yang G, Qin X, Mo L, Xiong X, Xiong Y, He H, Lan D, Fu W, Li J, Yin S. Molecular characterization of MSX2 gene and its role in regulating steroidogenesis in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2025; 231:101-110. [PMID: 39427591 DOI: 10.1016/j.theriogenology.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Cumulus granulosa cells (CGCs) are somatic cells surrounding the oocyte that play an important role in oocyte growth, meiotic maturation, ovulation, and fertilization in mammals. Therefore, revealing the molecular mechanisms related to the development and function of CGCs is essential for further understanding the regulatory network in female reproduction. MSX2 belongs to the highly conserved msh homeobox gene family and plays diverse roles in different biological processes. This study cloned the coding sequence (CDS) of the yak MSX2 gene and detected the abundance and localization of MSX2 in the major female reproductive organs. The results indicated that the CDS of this gene included 747 base pairs and encoded 248 amino acids. The abundance of MSX2 mRNA was highly expressed in the luteal phase of the yak ovary during the estrous cycle, and MSX2 protein was widely expressed in different female reproductive organs, including the ovary, corpus luteum, uterus, and oviduct. Repressing MSX2 abundance in yak CGCs declined the cell viability and defective steroidogenesis. Several genes abundances related to cell proliferation, apoptosis, and sterogenesis also changed after MSX2 knockdown. MSX2 overexpression had the opposite effect on cell viability in yak CGCs. These results reveal the specific mechanism by which MSX2 regulates the development and function of yak CGCs and give novel and valuable insights into the mechanisms involved in yak reproduction.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Gan Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xuan Qin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Honghong He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Cañón-Beltrán K, García-García RM, Cajas YN, Fierro N, Lorenzo PL, Arias-Álvarez M. Improvement of oocyte competence and in vitro oocyte maturation with EGF and IGF-I in Guinea pig model. Theriogenology 2024; 214:206-214. [PMID: 37907035 DOI: 10.1016/j.theriogenology.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
In vitro maturation (IVM) system is an alternative method to superovulation protocols to obtain mature oocytes. Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF-I) have been widely used in IVM medium in different species. Although the guinea pig is a valuable animal model for reproductive studies, IVM is rarely used. We aimed to establish a suitable in vitro production system using EGF and/or IGF-I during IVM to improve oocyte competence. Firstly, immunolocalization of EGF and IGF-I receptors in the ovary was assessed. An IVM dose-response experiment was performed with cumulus-oocyte complexes (COCs) supplemented with: 1) EGF [0, 10, 50, 100 ng/mL or 10% fetal calf serum (FCS)]; 2) IGF-I [0, 50, 100, 200 ng/mL or 10% FCS]; or 3) the concentrations of EGF and IGF-I which showed the best IVM index in the previous experiments, with or without Fetal Calf Serum (FCS). Cortical granule and mitochondria distribution patterns were determined in in vivo and in vitro-matured oocytes for the first time in this species. Apoptotic rate after IVM and oocyte competence by in vitro embryo development were evaluated. Immunohistochemistry results showed positive immunostaining of EGF and IGF receptors in corpus luteum, oocytes, granulosa and theca cells in follicles in all stages of development. Supplementation of IVM medium with 50 ng/mL EGF or 100 ng/mL IGF-I or their combination with FCS successfully led to oocyte nuclear and cytoplasmic maturation and reduced the apoptotic rate. Both growth factors improved oocyte competence during IVM in this species since early embryos were in vitro developed, showing better results when FCS was used in the IVM medium.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador.
| | - Rosa M García-García
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - Yulia N Cajas
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), Cuenca, EC010205, Ecuador
| | - Natacha Fierro
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador
| | - Pedro L Lorenzo
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - María Arias-Álvarez
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain.
| |
Collapse
|
3
|
Ma Y, Du C, Xie X, Zhang Y, Wang C, Xu J, Xia G, Yang Y. To explore the regulatory role of Wnt/P53/Caspase3 signal in mouse ovarian development based on LFQ proteomics. J Proteomics 2023; 272:104772. [PMID: 36414229 DOI: 10.1016/j.jprot.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Early ovarian follicular development is regulated by multiple proteins and signaling pathways, including the Wnt gene. To explore the regulatory mechanism of Wnt signaling on early ovarian follicular development, ovaries from 17.5 days post coitum (17.5 dpc) mice were collected and cultured in vitro for four days in the presence of IWP2 as a Wnt activity inhibitor and KN93 as a CaMKII inhibitor. LFQ proteomics technique was then used to analyze the significant differentially abundant (P-SDA) 93 and 262 proteins in the IWP2 and KN93 groups, respectively. Of these, 63 up-regulated proteins and 30 down-regulated proteins were identified for IWP2, along with 3 significant KEGG pathways (P < 0.05). For the KN93 group, 168 up-regulated proteins and 94 down-regulated ones were P-SDA, with 9 significant KEGG pathways also noted (P < 0.05). In both IWP2 and KN93 groups, key pathways (Wnt signaling pathway, Notch signaling pathway, P53 signaling pathway, TGF-β signaling pathway, ovarian steroid production) and metabolic regulation (energy metabolism, metal ion metabolism) were found to be related to early ovarian follicular development. Finally, western blotting demonstrated the regulatory role of Wnt/P53/Caspase3 signaling pathway in mouse ovarian development. These results contribute new knowledge to the understanding of regulatory factors of early ovarian follicular development. SIGNIFICANCE: In this study, label-free quantification (LFQ) was used in combination with liquid chromatography-mass spectrometer (LC-MS/MS) to study potential changes in the proteomic profiles of embryonic mice subjected to Wnt inhibitor IWP2 and CaMKIIinhibitor KN93. In addition, bioinformatics and comparative analyses were performed using publicly available proteomics databases to further explore the underlying mechanisms associated with early mouse ovarian growth and development.
Collapse
Affiliation(s)
- Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Changzheng Du
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
4
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Turathum B, Gao EM, Chian RC. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells 2021; 10:cells10092292. [PMID: 34571941 PMCID: PMC8470117 DOI: 10.3390/cells10092292] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cumulus cells (CCs) originating from undifferentiated granulosa cells (GCs) differentiate in mural granulosa cells (MGCs) and CCs during antrum formation in the follicle by the distribution of location. CCs are supporting cells of the oocyte that protect the oocyte from the microenvironment, which helps oocyte growth and maturation in the follicles. Bi-directional communications between an oocyte and CCs are necessary for the oocyte for the acquisition of maturation and early embryonic developmental competence following fertilization. Follicle-stimulation hormone (FSH) and luteinizing hormone (LH) surges lead to the synthesis of an extracellular matrix in CCs, and CCs undergo expansion to assist meiotic resumption of the oocyte. The function of CCs is involved in the completion of oocyte meiotic maturation and ovulation, fertilization, and subsequent early embryo development. Therefore, understanding the function of CCs during follicular development may be helpful for predicting oocyte quality and subsequent embryonic development competence, as well as pregnancy outcomes in the field of reproductive medicine and assisted reproductive technology (ART) for infertility treatment.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Er-Meng Gao
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
- Correspondence: ; Tel.: +86-18917687092
| |
Collapse
|
6
|
da Silva LFI, Da Broi MG, da Luz CM, da Silva LECM, Ferriani RA, Meola J, Navarro PA. miR-532-3p: a possible altered miRNA in cumulus cells of infertile women with advanced endometriosis. Reprod Biomed Online 2020; 42:579-588. [PMID: 33358886 DOI: 10.1016/j.rbmo.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
RESEARCH QUESTION Is the profile of microRNA (miRNA) altered in cumulus cells of infertile women with early (EI/II) and advanced (EIII/IV) endometriosis? DESIGN In this prospective case-control study, a miRNA profile including 754 targets was evaluated in samples of cumulus cells from infertile women with endometriosis (5 EI/II, 5 EIII/IV) and infertile controls (5, male and/or tubal factor) undergoing ovarian stimulation for intracytoplasmic sperm injection, using TaqMan® Array Human MicroRNA Cards A and B. The groups were compared with Kruskal-Wallis test, followed by Benjamini-Hochberg correction and Dunn's post hoc test. An in silico enrichment analysis was performed to list the possibly altered pathways in which the altered miRNA target genes are involved. RESULTS Only the miRNA miR-532-3p showed significant differences among the analysed groups, being down-regulated in the EIII/IV group compared with the infertile control group, as well as compared with the EI/II group. The enrichment analysis showed that some genes regulated by this miRNA are involved in important pathways for the acquisition of oocyte competence, such as the oxytocin, calcium, Wnt, FoxO, ErbB and Ras signalling pathways, as well as the oocyte meiosis pathway. CONCLUSION The present findings bring new perspectives to understanding the follicular microenvironment of infertile women with different stages of endometriosis. It is suggested that the dysregulation of miR-532-3p may be a potential mechanism involved in the aetiopathogenesis of endometriosis-related infertility. Further studies are needed to evaluate these pathways in cumulus cells of infertile women with the disease, as well as their impact on the acquisition of oocyte competence.
Collapse
Affiliation(s)
- Liliane Fabio Isidoro da Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Michele Gomes Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Caroline Mantovani da Luz
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Lilian Eslaine Costa Mendes da Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Paula Andrea Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Demiray SB, Goker ENT, Tavmergen E, Yilmaz O, Calimlioglu N, Soykam HO, Oktem G, Sezerman U. Differential gene expression analysis of human cumulus cells. Clin Exp Reprod Med 2019; 46:76-86. [PMID: 31181875 PMCID: PMC6572664 DOI: 10.5653/cerm.2019.46.2.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.
Collapse
Affiliation(s)
- Sirin Bakti Demiray
- Assisted Reproduction Unit, Tepecik Education and Research Hospital, Izmir, Turkey
| | | | - Erol Tavmergen
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ozlem Yilmaz
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nilufer Calimlioglu
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | - Gulperi Oktem
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Wang L, Song S, Liu X, Zhang M, Xiang W. Low MFN2 expression related to ageing in granulosa cells is associated with assisted reproductive technology outcome. Reprod Biomed Online 2018; 38:152-158. [PMID: 30593438 DOI: 10.1016/j.rbmo.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
RESEARCH QUESTION Is low MFN2 expression associated with ageing in granulosa cells as well as assisted reproductive technology (ART) outcome, and what is the underlying mechanism of action of MFN2? DESIGN In a prospective study, fresh granulosa cells were obtained from 161 women aged 20-40 years who underwent IVF with embryo transfer and who were divided into two groups: the diminished ovarian reserve (DOR) group (n = 51) and the control group (n = 110). Patient characteristics including age, infertility duration, body mass index, FSH, anti-Müllerian hormone (AMH), antral follicle count (AFC) and husband's semen parameters and granulosa cell MFN2 expression levels, cell apoptosis, mitochondrial membrane potential (ΔΨm) and ATP levels were analysed. RESULTS There were no significant differences between the DOR and control groups in terms of age, infertility duration and husband'' semen parameters; however, significant (P< 0.05) changes were found between the two groups in FSH, AMH and AFC levels. MFN2 expression was remarkably lower in granulosa cells from the DOR group and decreased in both groups as age increased. Furthermore, among young patients, MFN2 levels significantly increased in patients with pregnancy. MFN2 protein levels and cell apoptosis were lower in the MFN2 knockdown (MFN2-siRNA) group than in the control (Cy3-siRNA) group. ΔΨm and ATP levels were reduced in the MFN2-siRNA group compared with the Cy3-siRNA group. CONCLUSIONS Low MFN2 expression levels in granulosa cells were related to ageing, which may be involved in the clinical outcome of ART by promoting cell apoptosis and affecting mitochondrial function.
Collapse
Affiliation(s)
- Lingjuan Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Su Song
- Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xuemei Liu
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital of Qingdao University, China
| | - Mengdi Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenpei Xiang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
9
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
10
|
Hwang SU, Jeon Y, Yoon JD, Cai L, Kim E, Yoo H, Kim KJ, Park KM, Jin M, Kim H, Hyun SH. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J Reprod Dev 2015; 61:549-57. [PMID: 26370787 PMCID: PMC4685221 DOI: 10.1262/jrd.2015-049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ganglioside is an acidic glycosphingolipid with sialic acids residues. This study was performed to investigate the effect and mechanism of ganglioside GT1b in porcine oocytes in the process of in vitro maturation (IVM) and preimplantation development. Metaphase II (MII) rates were significantly (P < 0.05) different between the control group and the 5 nM GT1b treatment group. Intracellular glutathione (GSH) levels in oocytes matured with 5 nM and 20 nM and GT1b decreased significantly (P < 0.05). The 10 nM group showed a significant (P < 0.05) decrease in intracellular reactive oxygen species (ROS) levels compared with the control group. Subsequently, the level of intracellular Ca(2+) in oocytes treated with different concentrations of GT1b was measured. Intracellular Ca(2+) was significantly (P < 0.05) increased with a higher concentration of GT1b in a dose-dependent manner. Real-time PCR was performed and showed that the expression of bradykinin 2 receptor (B2R) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) in cumulus cells was significantly (P < 0.05) decreased in the 20 nM GT1b treatment group. Treatment with 5 nM GT1b significantly (P < 0.05) decreased the expression of CaMKIIδ. In oocytes, treatment with 5 nM GT1b significantly (P < 0.05) decreased CaMKIIγ and POU5F1 (POU domain, class 5, transcription factor 1). However, treatment with 20 nM GT1b significantly (P < 0.05) increased the expression of POU5F1. Finally, embryonic developmental data showed no significant differences in the two experiments (parthenogenesis and in vitro fertilization). In conclusion, the results of the present study indicated that GT1b plays an important role in increasing the nuclear maturation rate and decreasing the intracellular ROS levels during IVM. However, GT1b inhibited maturation of the cytoplasm by maintaining intracellular Ca(2+) in the process of oocyte maturation regardless of the cell cycle stage. Therefore, GT1b is thought to act on another mechanism that controls intracellular Ca(2+).
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 362-763, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
12
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|