1
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
2
|
Wingrove JS, Wimmer J, Saba Echezarreta VE, Piazza A, Spencer GE. Retinoic acid reduces the formation of, and acutely modulates, invertebrate electrical synapses. J Neurophysiol 2024; 131:965-981. [PMID: 38568843 DOI: 10.1152/jn.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.
Collapse
Affiliation(s)
- Joel S Wingrove
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Justin Wimmer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Alicia Piazza
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
3
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
5
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Wingrove J, de Hoog E, Spencer GE. Disruptions in network plasticity precede deficits in memory following inhibition of retinoid signaling. J Neurophysiol 2023; 129:41-55. [PMID: 36448682 DOI: 10.1152/jn.00270.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for vertebrate cognition and hippocampal plasticity, but few studies have examined its role in invertebrate learning and memory, and its actions in the invertebrate central nervous system are currently unknown. Using the mollusc Lymnaea stagnalis, we examined operant conditioning of the respiratory behavior, controlled by a well-defined central pattern generator (CPG), and used citral to inhibit retinoic acid signaling. Both citral- and vehicle-treated animals showed normal learning, but citral-treated animals failed to exhibit long-term memory at 24 h. Cohorts of citral- or vehicle-treated animals were dissected into semi-intact preparations, either 1 h after training, or after the memory test 24 h later. Simultaneous electrophysiological recordings from the CPG pacemaker cell (right pedal dorsal 1; RPeD1) and an identified motorneuron (VI) were made while monitoring respiratory activity (pneumostome opening). Activity of the CPG pneumostome opener interneuron (input 3 interneuron; IP3) was also monitored indirectly. Vehicle-treated conditioned preparations showed significant changes in network parameters immediately after learning, such as reduced motorneuron bursting activity (from IP3 input), delayed pneumostome opening, and decoupling of coincident IP3 input within the network. However, citral-treated preparations failed to exhibit these network changes and more closely resembled naïve preparations. Importantly, these citral-induced differences were manifested immediately after training and before any overt changes in the behavioral response (memory impairment). These studies shed light on where and when retinoid signaling might affect a central pattern-generating network to promote memory formation during conditioning of a homeostatic behavior.NEW & NOTEWORTHY We provide novel evidence for how conditioning-induced changes in a CPG network are disrupted when retinoid signaling is inhibited. Inhibition of retinoic acid signaling prevents long-term memory formation following operant conditioning, but has no effect on learning. Simultaneous electrophysiological and behavioral analyses indicate network changes immediately following learning, but these changes are prevented with inhibition of retinoid signaling, before any overt changes in behavior. These data suggest sites for retinoid actions during memory formation.
Collapse
Affiliation(s)
- Joel Wingrove
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Eric de Hoog
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
7
|
Su CL, Cheng CC, Yen PH, Huang JX, Ting YJ, Chiang PH. Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation. Commun Biol 2022; 5:1166. [PMID: 36323817 PMCID: PMC9630493 DOI: 10.1038/s42003-022-04124-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Various magnetic deep brain stimulation (DBS) methods have been developing rapidly in the last decade for minimizing the invasiveness of DBS. However, current magnetic DBS methods, such as magnetothermal and magnetomechanical stimulation, require overexpressing exogeneous ion channels in the central nervous system (CNS). It is unclear whether magnetomechanical stimulation can modulate non-transgenic CNS neurons or not. Here, we reveal that the torque of magnetic nanodiscs with weak and slow alternative magnetic field (50 mT at 10 Hz) could activate neurons through the intrinsic transient receptor potential canonical channels (TRPC), which are mechanosensitive ion channels widely expressed in the brain. The immunostaining with c-fos shows the increasement of neuronal activity by wireless DBS with magnetomechanical approach in vivo. Overall, this research demonstrates a magnetic nanodiscs-based magnetomechanical approach that can be used for wireless neuronal stimulation in vitro and untethered DBS in vivo without implants or genetic manipulation.
Collapse
Affiliation(s)
- Chih-Lun Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Chao-Chun Cheng
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Ping-Hsiang Yen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Jun-Xuan Huang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Yen-Jing Ting
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C..
| |
Collapse
|
8
|
de Hoog E, Saba Echezarreta VE, Turgambayeva A, Foran G, Megaly M, Necakov A, Spencer GE. Molluscan RXR Transcriptional Regulation by Retinoids in a Drosophila CNS Organ Culture System. Cells 2022; 11:2493. [PMID: 36010570 PMCID: PMC9406730 DOI: 10.3390/cells11162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Retinoic acid, the active metabolite of Vitamin A, is important for the appropriate development of the nervous system (e.g., neurite outgrowth) as well as for cognition (e.g., memory formation) in the adult brain. We have shown that many of the effects of retinoids are conserved in the CNS of the mollusc, Lymnaea stagnalis. RXRs are predominantly nuclear receptors, but the Lymnaea RXR (LymRXR) exhibits a non-nuclear distribution in the adult CNS, where it is also implicated in non-genomic retinoid functions. As such, we developed a CNS Drosophila organ culture-based system to examine the transcriptional activity and ligand-binding properties of LymRXR, in the context of a live invertebrate nervous system. The novel ligand sensor system was capable of reporting both the expression and transcriptional activity of the sensor. Our results indicate that the LymRXR ligand sensor mediated transcription following activation by both 9-cis RA (the high affinity ligand for vertebrate RXRs) as well as the vertebrate RXR synthetic agonist, SR11237. The LymRXR ligand sensor was also activated by all-trans RA, and to a much lesser extent by the vertebrate RAR synthetic agonist, EC23. This sensor also detected endogenous retinoid-like activity in the CNS of developing Drosophila larvae, primarily during the 3rd instar larval stage. These data indicate that the LymRXR sensor can be utilized not only for characterization of ligand activation for studies related to the Lymnaea CNS, but also for future studies of retinoids and their functions in Drosophila development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
9
|
de Hoog E, Spencer GE. Activity-dependent modulation of neuronal K V channels by retinoic acid enhances Ca V channel activity. J Biol Chem 2022; 298:101959. [PMID: 35452677 PMCID: PMC9127218 DOI: 10.1016/j.jbc.2022.101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/18/2022] Open
Abstract
The metabolite of vitamin A, retinoic acid (RA), is known to affect synaptic plasticity in the nervous system and to play an important role in learning and memory. A ubiquitous mechanism by which neuronal plasticity develops in the nervous system is through modulation of voltage-gated Ca2+ (CaV) and voltage-gated K+ channels. However, how retinoids might regulate the activity of these channels has not been determined. Here, we show that RA modulates neuronal firing by inducing spike broadening and complex spiking in a dose-dependent manner in peptidergic and dopaminergic cell types. Using patch-clamp electrophysiology, we show that RA-induced complex spiking is activity dependent and involves enhanced inactivation of delayed rectifier voltage-gated K+ channels. The prolonged depolarizations observed during RA-modulated spiking lead to an increase in Ca2+ influx through CaV channels, though we also show an opposing effect of RA on the same neurons to inhibit Ca2+ influx. At physiological levels of Ca2+, this inhibition is specific to CaV2 (not CaV1) channels. Examining the interaction between the spike-modulating effects of RA and its inhibition of CaV channels, we found that inhibition of CaV2 channels limits the Ca2+ influx resulting from spike modulation. Our data thus provide novel evidence to suggest that retinoid signaling affects both delayed rectifier K+ channels and CaV channels to fine-tune Ca2+ influx through CaV2 channels. As these channels play important roles in synaptic function, we propose that these modulatory effects of retinoids likely contribute to synaptic plasticity in the nervous system.
Collapse
Affiliation(s)
- Eric de Hoog
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St Catharines, Ontario. Canada. L2S 3A1
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St Catharines, Ontario. Canada. L2S 3A1.
| |
Collapse
|
10
|
Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A large number of toxicity studies report abnormalities in early life-stage (ELS) fish that are described here as a sublethal toxicity syndrome (TxSnFELS) and generally include a reduced heart rate, edemas (yolk sac and cardiac), and a variety of morphological abnormalities. The TxSnFELS is very common and not diagnostic for any chemical or class of chemicals. This sublethal toxicity syndrome is mostly observed at high exposure concentrations and appears to be a baseline, non-specific toxicity response; however, it can also occur at low doses by specific action. Toxicity metrics for this syndrome generally occur at concentrations just below those causing mortality and have been reported for a large number of diverse chemicals. Predictions based on tissue concentrations or quantitative-structure activity relationship (QSAR) models support the designation of baseline toxicity for many of the tested chemicals, which is confirmed by observed values. Given the sheer number of disparate chemicals causing the TxSnFELS and correlation with QSAR derived partitioning; the only logical conclusion for these high-dose responses is baseline toxicity by nonspecific action and not a lock and key type receptor response. It is important to recognize that many chemicals can act both as baseline toxicants and specific acting toxicants likely via receptor interaction and it is not possible to predict those threshold doses from baseline toxicity. We should search out these specific low-dose responses for ecological risk assessment and not rely on high-concentration toxicity responses to guide environmental protection. The goal for toxicity assessment should not be to characterize toxic responses at baseline toxicity concentrations, but to evaluate chemicals for their most toxic potential. Additional aspects of this review evaluated the fish ELS teratogenic responses in relation to mammalian oral LD50s and explored potential key events responsible for baseline toxicity.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA.
| |
Collapse
|
11
|
Shao M, Lu L, Wang Q, Ma L, Tian X, Li C, Li C, Guo D, Wang Q, Wang W, Wang Y. The multi-faceted role of retinoid X receptor in cardiovascular diseases. Biomed Pharmacother 2021; 137:111264. [PMID: 33761589 DOI: 10.1016/j.biopha.2021.111264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
Retinoid X receptors (RXRs) are members of ligand-dependent transcription factors whose effects on a diversity of cellular processes, including cellular proliferation, the immune response, and lipid and glucose metabolism. Knock out of RXRα causes a hypoplasia of the myocardium which is lethal during fetal life. In addition, the heart maintains a well-orchestrated balances in utilizing fatty acids (FAs) and other substrates to meet the high energy requirements. As the master transcriptional regulators of lipid metabolism, RXRs become particularly important for the energy needs of the heart. Accumulating evidence suggested that RXRs may exert direct beneficial effects in the heart both through heterodimerization with other nuclear receptors (NRs) and homodimerization, thus standing as suitable targets for treating in cardiovascular diseases. Although compounds that target RXRs are promising drugs, their use is limited by toxicity. A better understanding of the structural biology of RXRs in cardiovascular disease should enable the rational design of more selective nuclear receptor modulators to overcome these problems. Here, this review summarizes a brief overview of RXRs structure and versatility of RXR action in the control of cardiovascular diseases. And we also discussed the therapeutic potential of RXR ligand.
Collapse
Affiliation(s)
- Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linghui Lu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lin Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Tian
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chun Li
- Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China; College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Rosiles-Abonce A, Rubio C, Taddei E, Rosiles D, Rubio-Osornio M. Antiepileptogenic Effect of Retinoic Acid. Curr Neuropharmacol 2021; 19:383-391. [PMID: 32351181 PMCID: PMC8033965 DOI: 10.2174/1570159x18666200429232104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid, a metabolite of vitamin A, acts through either genomic or nongenomic actions. The genomic action of retinoids exerts effects on gene transcription through interaction with retinoid receptors such as retinoic acid receptors (RARα, β, and γ) and retinoid X receptors (RXRα, β, and γ) that are primarily concentrated in the amygdala, pre-frontal cortex, and hippocampal areas in the brain. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks. Previous experimental studies have reported that retinoic acid exerts an antiepileptogenic effect through diverse mechanisms, including the modulation of gap junctions, neurotransmitters, long-term potentiation, calcium channels and some genes. To our knowledge, there are no previous or current clinical trials evaluating the use of retinoic acid for seizure control.
Collapse
Affiliation(s)
| | | | | | | | - Moisés Rubio-Osornio
- Address correspondence to this author at the Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico; E-mail:
| |
Collapse
|
13
|
Huang C, Chen JT. Chronic retinoic acid treatment induces affective disorders by impairing the synaptic plasticity of the hippocampus. J Affect Disord 2020; 274:678-689. [PMID: 32664002 DOI: 10.1016/j.jad.2020.05.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/18/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it. METHODS Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump. RESULTS RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level. LIMITATIONS The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study. CONCLUSIONS RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.
Collapse
Affiliation(s)
- Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Ju-Tao Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
14
|
Rzajew J, Radzik T, Rebas E. Calcium-Involved Action of Phytochemicals: Carotenoids and Monoterpenes in the Brain. Int J Mol Sci 2020; 21:ijms21041428. [PMID: 32093213 PMCID: PMC7073062 DOI: 10.3390/ijms21041428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neurodegenerative and mood disorders represent growing medical and social problems, many of which are provoked by oxidative stress, disruption in the metabolism of various neurotransmitters, and disturbances in calcium homeostasis. Biologically active plant compounds have been shown to exert a positive impact on the function of calcium in the central nervous system. Methods: The present paper reviews studies of naturally occurring terpenes and derivatives and the calcium-based aspects of their mechanisms of action, as these are known to act upon a number of targets linked to neurological prophylaxis and therapy. Results: Most of the studied phytochemicals possess anticancer, antioxidative, anti-inflammatory, and neuroprotective properties, and these have been used to reduce the risk of or treat neurological diseases. Conclusion: The neuroprotective actions of some phytochemicals may employ mechanisms based on regulation of calcium homeostasis and should be considered as therapeutic agents.
Collapse
|
15
|
do Nascimento MAW, Cavalari FC, Staldoni de Oliveria V, Gonçalves R, Menegaz D, da Silveira Loss E, Silva FRMB. Crosstalk in the non-classical signal transduction of testosterone and retinol in immature rat testes. Steroids 2020; 153:108522. [PMID: 31622614 DOI: 10.1016/j.steroids.2019.108522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the effects of the interaction between testosterone and retinol on the rapid responses of cultured Sertoli cells obtained from 10-day-old immature rat testes. Non-classical actions of testosterone and retinol were investigated, and the activities of L-type voltage-dependent calcium channels (L-VDCC) and voltage-dependent potassium channels (Kv) were determined by measuring 45Ca2+ influx in whole testis. Additionally, the effects of testosterone and retinol on these channels were studied in primary culture of Sertoli cells using the patch-clamp technique. 45Ca2+ influx was used to observe a dose-response curve on tissues treated with retinol and/or testosterone for 2 min (10-12, 10-9 and 10-6 M and 10-9 and 10-6 M), and a concentration of 10-6 M was selected to investigate the mechanism of action of testosterone and retinol on rapid responses. Participation of the L-VDCC and Kv channels was investigated using nifedipine and tetraethylammonium chloride (TEA) inhibitors, respectively. Both, testosterone and retinol act through non-classical mechanisms, stimulating 45Ca2+ influx in immature rat testes. The response to testosterone was abolished by nifedipine and TEA, whereas the effects of retinol were partially blocked by nifedipine and completely inhibited by TEA. Retinol amplified the testosterone-induced effect on 45Ca2+ influx in the testes, suggesting a crosstalk between rapid responses (calcium influx) and cell repolarization via activation of Kv channels. Whole-cell electrophysiology data demonstrated that testosterone and retinol increased voltage-dependent potassium currents (Kv) in Sertoli cells; inhibition of these responses by TEA confirmed the involvement of TEA-sensitive K+ channels in these effects. Taken together, we demonstrate, for the first time, crosstalk between testosterone and retinol that is mediated by a non-classical mechanism involving the L-VDCC-triggered cell depolarization and activation of repolarization by Kv currents in Sertoli cells. These ionic modulations play a physiological role in Sertoli cells and male fertility via stimulation of secretory activities.
Collapse
Affiliation(s)
- Monica Andressa Wessner do Nascimento
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Carvalho Cavalari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Vanessa Staldoni de Oliveria
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Renata Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Danusa Menegaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Eloisa da Silveira Loss
- Departamento de Ciências Fisiológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
16
|
Johnson A, Nasser TIN, Spencer GE. Inhibition of Rho GTPases in Invertebrate Growth Cones Induces a Switch in Responsiveness to Retinoic Acid. Biomolecules 2019; 9:biom9090460. [PMID: 31500289 PMCID: PMC6769630 DOI: 10.3390/biom9090460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
During development, growth cones are essential for axon pathfinding by sensing numerous guidance cues in their environment. Retinoic acid, the metabolite of vitamin A, is important for neurite outgrowth during vertebrate development, but may also play a role in axon guidance, though little is known of the cellular mechanisms involved. Our previous studies showed that retinoid-induced growth cone turning of invertebrate motorneurons requires local protein synthesis and calcium influx. However, the signalling pathways that link calcium influx to cytoskeletal dynamics involved in retinoid-mediated growth cone turning are not currently known. The Rho GTPases, Cdc42 and Rac, are known regulators of the growth cone cytoskeleton. Here, we demonstrated that inhibition of Cdc42 or Rac not only prevented growth cone turning toward retinoic acid but could also induce a switch in growth cone responsiveness to chemorepulsion or growth cone collapse. However, the effects of Cdc42 or Rac inhibition on growth cone responsiveness differed, depending on whether the turning was induced by the all-trans or 9-cis retinoid isomer. The effects also differed depending on whether the growth cones maintained communication with the cell body. These data strongly suggest that Cdc42 and Rac are downstream effectors of retinoic acid during growth cone guidance.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Tamara I N Nasser
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
17
|
Santillo S, Martini A, Polverino A, Mercuri NB, Guatteo E, Sorrentino G. Treating TB human neuroectodermal cell line with retinoic acid induces the appearance of neuron-like voltage-gated ionic currents. Brain Res 2019; 1711:97-105. [PMID: 30660613 DOI: 10.1016/j.brainres.2019.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
TB is a cell line derived from the cerebrospinal fluid sample of a patient with primary leptomeningeal melanomatosis. Our previous immunological and ultrastructural analysis revealed that TB cells differentiate towards a neuronal phenotype when grown in vitro up to 7 days in presence of 10 µM all-trans retinoic acid (RA). Recently, we reported that TB cells are sensitive to the cytotoxic effects of β-amyloid peptides, activating the cytosolic phospholipase A2. To date, it is not known if RA, in addition to inducing morphological changes, also causes functional modification in TB cells, by regulating voltage-gated ionic currents. To this purpose, we performed electrophysiological characterization of undifferentiated (TB) and differentiated (RA-TB) cells by means of whole-cell patch clamp recordings. Upon depolarizing stimuli, both groups displayed voltage-gated K+ outward currents of similar amplitude. By contrast, the low amplitude voltage-gated Na+ currents recorded in undifferentiated TB cells were largely up-regulated by RA exposure. This current was strongly reduced by TTX and lidocaine and completely abolished by removal of extracellular sodium. Furthermore, treatment with RA caused the appearance of a late-onset inward current carried by Ca2+ ions in a subpopulation of TB cells. This current was not affected by removal of extracellular Na+ and was completely blocked by Cd2+, a broad-spectrum blocker of Ca2+ currents. Altogether, our results indicate that RA-differentiation of TB cells induces functional changes by augmenting the amplitude of voltage-gated sodium current and by inducing, in a subpopulation of treated cells, the appearance of a voltage-gated calcium current.
Collapse
Affiliation(s)
- Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti, CNR, Naples, Italy.
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Rome, Tor Vergata, Department of Neurosciences, Rome, Italy
| | - Arianna Polverino
- University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy; Institute of Diagnosis and Treatment Hermitage, Naples, Italy
| | - Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Rome, Tor Vergata, Department of Neurosciences, Rome, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy
| | - Giuseppe Sorrentino
- Istituto di Scienze Applicate e Sistemi Intelligenti, CNR, Naples, Italy; University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy; Institute of Diagnosis and Treatment Hermitage, Naples, Italy
| |
Collapse
|
18
|
de Hoog E, Lukewich MK, Spencer GE. Retinoid receptor-based signaling plays a role in voltage-dependent inhibition of invertebrate voltage-gated Ca 2+ channels. J Biol Chem 2019; 294:10076-10093. [PMID: 31048374 DOI: 10.1074/jbc.ra118.006444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
The retinoic acid receptor (RAR) and retinoid X receptor (RXR) mediate the cellular effects of retinoids (derivatives of vitamin A). Both RAR and RXR signaling events are implicated in hippocampal synaptic plasticity. Furthermore, retinoids can interact with calcium signaling during homeostatic plasticity. We recently provided evidence that retinoids attenuate calcium current (I Ca) through neuronal voltage-gated calcium channels (VGCCs). We now examined the possibility that constitutive activity of neuronal RXR and/or RAR alters calcium influx via the VGCCs. We found that in neurons of the mollusk Lymnaea stagnalis, two different RXR antagonists (PA452 and HX531) had independent and opposing effects on I Ca that were also time-dependent; whereas the RXR pan-antagonist PA452 enhanced I Ca, HX531 reduced I Ca Interestingly, this effect of HX531 occurred through voltage-dependent inhibition of VGCCs, a phenomenon known to influence neurotransmitter release from neurons. This inhibition appeared to be independent of G proteins and was largely restricted to Cav2 Ca2+ channels. Of note, an RAR pan-antagonist, LE540, also inhibited I Ca but produced G protein-dependent, voltage-dependent inhibition of VGCCs. These findings provide evidence that retinoid receptors interact with G proteins in neurons and suggest mechanisms by which retinoids might affect synaptic calcium signaling.
Collapse
Affiliation(s)
- Eric de Hoog
- From the Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Mark K Lukewich
- From the Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Gaynor E Spencer
- From the Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
19
|
Lapa T, Breslavets M. Treatment of Hailey-Hailey disease with narrowband phototherapy and acitretin: A case report. SAGE Open Med Case Rep 2019; 7:2050313X19845221. [PMID: 31105943 PMCID: PMC6501477 DOI: 10.1177/2050313x19845221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Hailey–Hailey disease, or familial benign chronic pemphigus, is an autosomal dominant genodermatosis affecting mainly intertriginous areas. It manifests itself in painful blisters, erosions, and cracks and has a chronic course with frequent flares, significantly impacting patients’ quality of life. Presently, there is no cure, but multiple treatment modalities are available. Most evidence supports treatment with topical steroids and antimicrobials. Treatment of recalcitrant disease has been shown to benefit from the addition of oral antibiotics, Naltrexone, systemic retinoids, botulinum toxin A injections, laser treatment, and surgical excision. We describe a case of refractory Hailey–Hailey disease for which most of the abovementioned options failed, but which demonstrated significant improvement following a combination of oral acitretin and narrowband ultraviolet-B phototherapy. To achieve remission, the patient received 30 sessions three times per week with the increment of 20 mJ/cm2 per session and oral acitretin 25 mg PO daily.
Collapse
Affiliation(s)
- Tatiana Lapa
- Centre for Medical and Surgical Dermatology, Whitby, ON, Canada
| | | |
Collapse
|