1
|
Xie Z, Abumaria N. Effect of truncation on TRPM7 channel activity. Channels (Austin) 2023; 17:2200874. [PMID: 37040321 PMCID: PMC10761173 DOI: 10.1080/19336950.2023.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Transient receptor potential melastatin-like 7 (TRPM7) is a key player in various physiological and pathological processes. TRPM7 channel activity is regulated by different factors. The effects of cleavage of different domains on channel activity remain unknown. Here, we constructed several TRPM7 clones and explored the effects of truncating the mouse TRPM7 at different locations on the ion channel activity in two cell lines. We compared the clones' activity with the full-length TRPM7 and the native TRPM7 in transfected and untransfected cells. We also expressed fluorescently tagged truncated clones to examine their protein stability and membrane targeting. We found that truncating the kinase domain induced reduction in TRPM7 channel activity. Further truncations beyond the kinase (serine/threonine rich domain and/or coiled-coil domain) did not result in further reductions in channel activity. Two truncated clones lacking the TRP domain or the melastatin homology domain had a completely nonfunctional channel apparently due to disruption of protein stability. We identified the shortest structure of TRPM7 with measurable channel activity. We found that the truncated TRPM7 containing only S5 and S6 domains retained some channel activity. Adding the TRP domain to the S5-S6 resulted in a significant increase in channel activity. Finally, our analysis showed that TRPM7 outward currents are more sensitive to truncations than inward currents. Our data provide insights on the effects of truncating TRPM7 at different locations on the channel functions, highlighting the importance of different domains in impacting channel activity, protein stability, and/or membrane targeting.
Collapse
Affiliation(s)
- Zhuqing Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bousova K, Zouharova M, Herman P, Vymetal J, Vetyskova V, Jiraskova K, Vondrasek J. TRPM5 Channel Binds Calcium-Binding Proteins Calmodulin and S100A1. Biochemistry 2022; 61:413-423. [PMID: 35225608 DOI: 10.1021/acs.biochem.1c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melastatin transient receptor potential (TRPM) channels belong to one of the most significant subgroups of the transient receptor potential (TRP) channel family. Here, we studied the TRPM5 member, the receptor exposed to calcium-mediated activation, resulting in taste transduction. It is known that most TRP channels are highly modulated through interactions with extracellular and intracellular agents. The binding sites for these ligands are usually located at the intracellular N- and C-termini of the TRP channels, and they can demonstrate the character of an intrinsically disordered protein (IDP), which allows such a region to bind various types of molecules. We explored the N-termini of TRPM5 and found the intracellular regions for calcium-binding proteins (CBPs) the calmodulin (CaM) and calcium-binding protein S1 (S100A1) by in vitro binding assays. Furthermore, molecular docking and molecular dynamics simulations (MDs) of the discovered complexes confirmed their known common binding interface patterns and the uniqueness of the basic residues present in the TRPM binding regions for CaM/S100A1.
Collapse
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Monika Zouharova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Jiri Vymetal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Veronika Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
3
|
Bousova K, Zouharova M, Herman P, Vetyskova V, Jiraskova K, Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1. Heliyon 2021; 7:e08490. [PMID: 34917797 PMCID: PMC8645431 DOI: 10.1016/j.heliyon.2021.e08490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Collapse
Affiliation(s)
- Kristyna Bousova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Corresponding author.
| | - Monika Zouharova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Patobiochemistry, Second Faculty of Medicine, Charles University, 150 06 Prague 5, V Uvalu 84, Czech Republic
| | - Petr Herman
- Department Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Veronika Vetyskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
4
|
Starostina I, Jang YK, Kim HS, Suh JS, Ahn SH, Choi GH, Suk M, Kim TJ. Distinct calcium regulation of TRPM7 mechanosensitive channels at plasma membrane microdomains visualized by FRET-based single cell imaging. Sci Rep 2021; 11:17893. [PMID: 34504177 PMCID: PMC8429465 DOI: 10.1038/s41598-021-97326-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Transient receptor potential subfamily M member 7 (TRPM7), a mechanosensitive Ca2+ channel, plays a crucial role in intracellular Ca2+ homeostasis. However, it is currently unclear how cell mechanical cues control TRPM7 activity and its associated Ca2+ influx at plasma membrane microdomains. Using two different types of Ca2+ biosensors (Lyn-D3cpv and Kras-D3cpv) based on fluorescence resonance energy transfer, we investigate how Ca2+ influx generated by the TRPM7-specific agonist naltriben is mediated at the detergent-resistant membrane (DRM) and non-DRM regions. This study reveals that TRPM7-induced Ca2+ influx mainly occurs at the DRM, and chemically induced mechanical perturbations in the cell mechanosensitive apparatus substantially reduce Ca2+ influx through TRPM7, preferably located at the DRM. Such perturbations include the disintegration of lipid rafts, microtubules, or actomyosin filaments; the alteration of actomyosin contractility; and the inhibition of focal adhesion and Src kinases. These results suggest that the mechanical membrane environment contributes to the TRPM7 function and activity. Thus, this study provides a fundamental understanding of how the mechanical aspects of the cell membrane regulate the function of mechanosensitive channels.
Collapse
Affiliation(s)
- Irina Starostina
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Heon-Su Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Gyu-Ho Choi
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea.,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myungeun Suk
- Department of Mechanical Engineering, Dong-Eui University, Pusan, 47340, Republic of Korea.
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
6
|
TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int J Mol Sci 2019; 20:ijms20184430. [PMID: 31505788 PMCID: PMC6770577 DOI: 10.3390/ijms20184430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions-N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member-the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different.
Collapse
|