1
|
Bushra, Maha IF, Xie X, Yin F. Integration of transcriptomic and metabolomic profiling of encystation in Cryptocaryon irritans regulated by rapamycin. Vet Parasitol 2023; 314:109868. [PMID: 36603452 DOI: 10.1016/j.vetpar.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Encystation in Cryptocaryon irritans is a fundamental process for environmental resistance and development. Autophagy participates in the encystation of ciliates, and rapamycin can induce autophagy in the cells. A set of genes and metabolites related to autophagy and encystation are highly elaborative. The existence of these genes and metabolites and their role are well characterized. However, little is known about their role in protozoans such as ciliates. The newly produced C. irritans protomonts were exposed to an optimal concentration of rapamycin (1400 nM), and the survival, encystation, microstructure/ultrastructure, transcriptomic and metabolomic profile in treated and control protomonts were investigated. The results showed that exposure of protomonts to rapamycin at 4 h significantly lowered the survival and encystation rates to 91.62 % and 98.44 % compared to the control group (100 %, p ≤ 0.05). Morphological alterations observed in light microscopy and transmission electron microscopy (TEM) demonstrated that the drug significantly changed cell symmetry by causing the formation of various autophagic vacuoles/vesicles. The transcriptome sequencing of rapamycin-treated protomont revealed that 2249 (1837 up-regulated and 977 down-regulated) differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 226 DEGs were successfully annotated in 21 pathways (p˂0.05), including most enriched pathways apoptosis and phagosome with 25 and 24 DEGs, respectively. Most unigenes were assigned to autophagy-related pathways; 24 DEGs were classified into phagosomes, and 15 DEGs were assigned to lysosome pathways. Cytoskeleton and cell progression-associated genes were down-regulated. Besides, cell death-inducing proteins were up-regulated. The metabolomic analysis revealed exposure to rapamycin treatment enhanced protomont metabolites, including L-Cysteine, which is related to autophagy. Rapamycin had influenced the gene and metabolites of protomont; activating autophagy with inhibition of mechanistic target of rapamycin, (mTOR). The process negatively influences protomont morphology, encystation, and survival. Further autophagy-related gene silencing can be investigated via genome sequencing of C. irritans to study encystation.
Collapse
Affiliation(s)
- Bushra
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Ivon F Maha
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Xiao Xie
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| | - Fei Yin
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
4
|
Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab ( Eriocheir sinensis) fed different percentage of lipid. Br J Nutr 2021; 127:666-678. [PMID: 33910655 DOI: 10.1017/s0007114521001409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-β (CaMKKβ)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKβ/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.
Collapse
|
5
|
García-Casas P, Alvarez-Illera P, Fonteriz RI, Montero M, Alvarez J. Mechanism of the lifespan extension induced by submaximal SERCA inhibition in C. elegans. Mech Ageing Dev 2021; 196:111474. [PMID: 33766744 DOI: 10.1016/j.mad.2021.111474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
We have reported recently that submaximal inhibition of the Sarco Endoplasmic Reticulum Ca2+ ATPase (SERCA) produces an increase in the lifespan of C. elegans worms. We have explored here the mechanism of this increased survival by studying the effect of SERCA inhibition in several mutants of signaling pathways related to longevity. Our data show that the mechanism of the effect is unrelated with the insulin signaling pathway or the sirtuin activity, because SERCA inhibitors increased lifespan similarly in mutants of these pathways. However, the effect required functional mitochondria and both the AMP kinase and TOR pathways, as the SERCA inhibitors were ineffective in the corresponding mutants. The same effects were obtained after reducing SERCA expression with submaximal RNAi treatment. The SERCA inhibitors did not induce ER-stress at the concentrations used, and their effect was not modified by inactivation of the OP50 bacterial food. Altogether, our data suggest that the effect may be due to a reduced ER-mitochondria Ca2+ transfer acting via AMPK activation and mTOR inhibition to promote survival.
Collapse
Affiliation(s)
- Paloma García-Casas
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Rosalba I Fonteriz
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Mayte Montero
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Javier Alvarez
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain.
| |
Collapse
|
6
|
Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J. Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Front Cell Dev Biol 2021; 8:609493. [PMID: 33569379 PMCID: PMC7868535 DOI: 10.3389/fcell.2020.609493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Besides skeletal muscle dysfunction, Duchenne muscular dystrophy (DMD) exhibits a progressive cardiomyopathy characterized by an impaired calcium (Ca2+) homeostasis and a mitochondrial dysfunction. Here we aimed to determine whether sarco-endoplasmic reticulum (SR/ER)–mitochondria interactions and mitochondrial function were impaired in dystrophic heart at the early stage of the pathology. For this purpose, ventricular cardiomyocytes and mitochondria were isolated from 3-month-old dystrophin-deficient mice (mdx mice). The number of contacts points between the SR/ER Ca2+ release channels (IP3R1) and the porine of the outer membrane of the mitochondria, VDAC1, measured using in situ proximity ligation assay, was greater in mdx cardiomyocytes. Expression levels of IP3R1 as well as the mitochondrial Ca2+ uniporter (MCU) and its regulated subunit, MICU1, were also increased in mdx heart. MICU2 expression was however unchanged. Furthermore, the mitochondrial Ca2+ uptake kinetics and the mitochondrial Ca2+ content were significantly increased. Meanwhile, the Ca2+-dependent pyruvate dehydrogenase phosphorylation was reduced, and its activity significantly increased. In Ca2+-free conditions, pyruvate-driven complex I respiration was decreased whereas in the presence of Ca2+, complex I-mediated respiration was boosted. Further, impaired complex I-mediated respiration was independent of its intrinsic activity or expression, which remains unchanged but is accompanied by an increase in mitochondrial reactive oxygen species production. Finally, mdx mice were treated with the complex I modulator metformin for 1 month. Metformin normalized the SR/ER-mitochondria interaction, decreased MICU1 expression and mitochondrial Ca2+ content, and enhanced complex I-driven respiration. In summary, before any sign of dilated cardiomyopathy, the DMD heart displays an aberrant SR/ER-mitochondria coupling with an increase mitochondrial Ca2+ homeostasis and a complex I dysfunction. Such remodeling could be reversed by metformin providing a novel therapeutic perspective in DMD.
Collapse
Affiliation(s)
- Claire Angebault
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathilde Lacôte
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jennifer Rieusset
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1-Univ Lyon, Lyon, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
7
|
Characterization of cytotoxic effects of aristolochic acids on the vascular endothelium. Toxicol In Vitro 2020; 65:104811. [PMID: 32119997 DOI: 10.1016/j.tiv.2020.104811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Aristolochic acid nephropathy (AAN) is characterized by interstitial fibrosis, proximal tubular atrophy, and hypoxia. A correlation between a reduced peritubular capillary density and the severity of fibrosis has been demonstrated. As calcium, redox and energetic homeostasis are crucial in maintaining endothelial cell function and survival, we aimed to investigate AA-induced disturbances involved in endothelial cell injury. Our results showed a cytotoxic effect of AA on EAhy926 endothelial cells. Exposure of aortic rings to AA impaired vascular relaxation to Acetylcholine (ACh). Increased levels of intracellular reactive oxygen species (ROS) were observed in cells exposed to AA. Pre-treatment with antioxidant N-acetyl cysteine inhibited AA-induced cell death. Superoxide dismutase resulted in restoring ACh-induced relaxation. An increase in intracellular calcium level ([Ca2+]i) was observed on endothelial cells. Calcium chelators BAPTA-AM or APB, a specific inhibitor of IP3R, improved cell viability. Moreover, AA exposure led to reduced AMP-activated protein kinase (AMPK) expression. AICAR, an activator of AMPK, improved the viability of AA-intoxicated cells and inhibited the rise of cytosolic [Ca2+]i levels. This study provides evidence that AA exposure increases ROS generation, disrupts calcium homeostasis and decreases AMPK activity. It also suggests that significant damage observed in endothelial cells may enhance microcirculation defects, worsening hypoxia and tubulointerstitial lesions.
Collapse
|
8
|
Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. Int J Biol Sci 2020; 16:1427-1440. [PMID: 32210730 PMCID: PMC7085223 DOI: 10.7150/ijbs.42962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Xiaohong Lu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Xuemei Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, Gangdong, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| |
Collapse
|