1
|
Nieto-Felipe J, Macias-Diaz A, Sanchez-Collado J, Berna-Erro A, Jardin I, Salido GM, Lopez JJ, Rosado JA. Role of Orai-family channels in the activation and regulation of transcriptional activity. J Cell Physiol 2023; 238:714-726. [PMID: 36952615 DOI: 10.1002/jcp.30971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 03/25/2023]
Abstract
Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.
Collapse
Affiliation(s)
- Joel Nieto-Felipe
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alvaro Macias-Diaz
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alejandro Berna-Erro
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Isaac Jardin
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose J Lopez
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
2
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
3
|
Hofer AM. The Love Story between Orai Calcium Entry Channels and Adenylyl Cyclases Gets even more Complicated. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab044. [PMID: 35330952 PMCID: PMC8788800 DOI: 10.1093/function/zqab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
|
4
|
Kar P, Barak P, Zerio A, Lin YP, Parekh AJ, Watts VJ, Cooper DMF, Zaccolo M, Kramer H, Parekh AB. AKAP79 Orchestrates a Cyclic AMP Signalosome Adjacent to Orai1 Ca 2+ Channels. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab036. [PMID: 34458850 PMCID: PMC8394516 DOI: 10.1093/function/zqab036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023]
Abstract
To ensure specificity of response, eukaryotic cells often restrict signalling molecules to sub-cellular regions. The Ca2+ nanodomain is a spatially confined signal that arises near open Ca2+ channels. Ca2+ nanodomains near store-operated Orai1 channels stimulate the protein phosphatase calcineurin, which activates the transcription factor NFAT1, and both enzyme and target are initially attached to the plasma membrane through the scaffolding protein AKAP79. Here, we show that a cAMP signalling nexus also forms adjacent to Orai1. Protein kinase A and phosphodiesterase 4, an enzyme that rapidly breaks down cAMP, both associate with AKAP79 and realign close to Orai1 after stimulation. PCR and mass spectrometry failed to show expression of Ca2+-activated adenylyl cyclase 8 in HEK293 cells, whereas the enzyme was observed in neuronal cell lines. FRET and biochemical measurements of bulk cAMP and protein kinase A activity consistently failed to show an increase in adenylyl cyclase activity following even a large rise in cytosolic Ca2+. Furthermore, expression of AKAP79-CUTie, a cAMP FRET sensor tethered to AKAP79, did not report a rise in cAMP after stimulation, despite AKAP79 association with Orai1. Hence, HEK293 cells do not express functional active Ca2+-activated adenylyl cyclases including adenylyl cyclase 8. Our results show that two ancient second messengers are independently generated in nanodomains close to Orai1 Ca2+ channels.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Pradeep Barak
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Yu-Ping Lin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK,NIEHS/NIH, 111 TW Alexander Drive, Durham, NC 27709, USA
| | - Amy J Parekh
- Stoke Mandeville Hospital, Mandeville Road, Aylesbury, HP21 8AL, UK
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Drug Discovery, Purdue Institute of Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Dermot M F Cooper
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Holger Kramer
- Proteomics and Metabolomics Centre, Medical Research Council, London Institute of Medical Sciences, London, W12 0NN, UK
| | | |
Collapse
|