1
|
Irizarry KJL, Zhong W, Sun Y, Kronmiller BA, Darmani NA. RNA sequencing least shrew ( Cryptotis parva) brainstem and gut transcripts following administration of a selective substance P neurokinin NK 1 receptor agonist and antagonist expands genomics resources for emesis research. Front Genet 2023; 14:975087. [PMID: 36865388 PMCID: PMC9972295 DOI: 10.3389/fgene.2023.975087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
The least shrew is among the subset of animals that are capable of vomiting and therefore serves as a valuable research model for investigating the biochemistry, molecular biology, pharmacology, and genomics of emesis. Both nausea and vomiting are associated with a variety of illnesses (bacterial/viral infections, bulimia, exposure to toxins, gall bladder disease), conditions (pregnancy, motion sickness, emotional stress, overeating) and reactions to drugs (chemotherapeutics, opiates). The severe discomfort and intense fear associated with the stressful symptoms of nausea and emesis are the major reason for patient non-compliance when being treated with cancer chemotherapeutics. Increased understanding of the physiology, pharmacology and pathophysiology underlying vomiting and nausea can accelerate progress for developing new antiemetics. As a major animal model for emesis, expanding genomic knowledge associated with emesis in the least shrew will further enhance the laboratory utility of this model. A key question is which genes mediate emesis, and are they expressed in response to emetics/antiemetics. To elucidate the mediators of emesis, in particular emetic receptors, their downstream signaling pathways, as well as the shared emetic signals, we carried out an RNA sequencing study focused on the central and peripheral emetic loci, the brainstem and gut. Thus, we sequenced RNA extracted from brainstem and gut tissues from different groups of least shrews treated with either a neurokinin NK1 receptor selective emetic agonist, GR73632 (5 mg/kg, i.p.), its corresponding selective antagonist netupitant (5 mg/kg, i.p.), a combination of these two agents, versus their corresponding vehicle-pretreated controls and drug naïve animals. The resulting sequences were processed using a de novo transcriptome assembly and used it to identify orthologs within human, dog, mouse, and ferret gene sets. We compared the least shrew to human and a veterinary species (dog) that may be treated with vomit-inducing chemotherapeutics, and the ferret, another well-established model organism for emesis research. The mouse was included because it does not vomit. In total, we identified a final set of 16,720 least shrew orthologs. We employed comparative genomics analyses as well as gene ontology enrichment, KEGG pathway enrichment and phenotype enrichment to better understand the molecular biology of genes implicated in vomiting.
Collapse
Affiliation(s)
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
2
|
Xiao H, Lu H, Xue Y, Jia Z, Dai M, He K, Zhao R. Deleterious effect in endothelin receptor-mediated coronary artery smooth muscle contractility in high-salt diet rats. Nutr Metab Cardiovasc Dis 2023; 33:234-244. [PMID: 36404239 DOI: 10.1016/j.numecd.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS High-salt diet has been suggested to increase the risk of heart disease. However, the mechanisms underlying coronary artery tension dysfunction caused by high-salt diet are unclear. Previous studies have shown that coronary artery spasm is often induced by endothelin-1 (ET-1) and thromboxane, leading to myocardial ischemia, while the store-operated Ca2+ entry (SOCE) function of coronary smooth muscle is very important in this process. METHODS AND RESULTS Tension measurements of endothelium-denuded coronary artery ring segments showed that vasocontraction induced by U46619, ET-1, orSTIM1/Orai1-mediated SOCE was significantly lower in 4% high-salt diet rats than in control rats fed a regular diet. The results of western blotting and immunohistochemistry assays showed lower expression levels of endothelial receptors ETA and ETB, STIM1 and Orai1 in coronary artery of high-salt intake rats compared with control rats. Fibrosis was observed by using Masson's trichrome staining and picrosirius red staining. The plasma ET-1 concentration in high-salt diet rats was significantly higher than that of controls. The interventricular septum and posterior wall of high-salt diet rats were significantly thickened. CONCLUSION Our findings indicated that coronary artery tension was significantly decreased in 4% high-salt diet rats and that this decrease may be due to the change of endothelin receptor and its downstream pathway SOCE related protein expression in coronary artery. Coronary fibrosis was observed in rats fed with high-salt diet. This study provides potential mechanistic insights into high-salt intake-induced heart disease.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haoyang Lu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yangcheng Xue
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Manyu Dai
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ke He
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
3
|
Liu M, Liu P, Zheng B, Liu Y, Li L, Han X, Liu Y, Chu L. Cardioprotective effects of alantolactone on isoproterenol-induced cardiac injury and cobalt chloride-induced cardiomyocyte injury. Int J Immunopathol Pharmacol 2022; 36:20587384211051993. [PMID: 34986670 PMCID: PMC8744082 DOI: 10.1177/20587384211051993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Alantolactone (AL) is a compound extracted from the roots of Inula Racemosa that has shown beneficial effects in cardiovascular disease. However, the cardioprotective mechanism of AL against hypoxic/ischemic (H/I) injury is still unclear. This research aimed to determine AL's ability to protect the heart against isoproterenol (ISO)-induced MI injury in vivo and cobalt chloride (CoCl2) induced H/I injury in vitro. METHODS Electrocardiography (ECG), lactate dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI) assays in addition to histological analysis of the myocardium were used to investigate the effects of AL in vivo. Influences of AL on L-type Ca2+ current (ICa-L) in isolated rat myocytes were observed by the patch-clamp technique. Furthermore, cell viability, apoptosis, oxidative stress injury, mitochondrial membrane potential, and intracellular Ca2+ concentration were examined in vitro. RESULTS The results indicated that AL treatment ameliorated the morphological and ECG changes associated with MI, and decreased levels of LDH, CK, and cTnI. Furthermore, pretreatment with AL elevated antioxidant enzyme activity and suppressed ROS production. AL prevented H/I-induced apoptosis, mitochondria damage, and calcium overload while reducing ICa-L in a concentration and time dependent fashion. The 50% inhibiting concentration (IC50) and maximal inhibitory effect (Emax) of AL were 17.29 μmol/L and 57.73 ± 1.05%, respectively. CONCLUSION AL attenuated MI-related injury by reducing oxidative stress, apoptosis, calcium overload, and mitochondria damage. These cardioprotective effects may be related to the direct inhibition of ICa-L.
Collapse
Affiliation(s)
- Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yangshuang Liu
- Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
4
|
Urocortin Role in Ischemia Cardioprotection and the Adverse Cardiac Remodeling. Int J Mol Sci 2021; 22:ijms222212115. [PMID: 34829997 PMCID: PMC8622004 DOI: 10.3390/ijms222212115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the considerable progress in strategies of myocardial protection, ischemic heart diseases (IHD) and consequent heart failure (HF) remain the main cause of mortality worldwide. Several procedures are used routinely to guarantee the prompt and successful reestablishment of blood flow to preserve the myocardial viability of infarcted hearts from ischemia injuries. However, ischemic heart reperfusion/revascularization triggers additional damages that occur when oxygen-rich blood re-enters the vulnerable myocardial tissue, which is a phenomenon known as ischemia and reperfusion (I/R) syndrome. Complications of I/R injuries provoke the adverse cardiac remodeling, involving inflammation, mishandling of Ca2+ homeostasis, apoptotic genes activation, cardiac myocytes loss, etc., which often progress toward HF. Therefore, there is an urgent need to develop new cardioprotective therapies for IHD and HF. Compelling evidence from animal studies and pilot clinical trials in HF patients suggest that urocortin (Ucn) isoforms, which are peptides associated with stress and belonging to the corticotropin releasing factor family, have promising potential to improve cardiovascular functions by targeting many signaling pathways at different molecular levels. This review highlights the current knowledge on the role of urocortin isoforms in cardioprotection, focusing on its acute and long-term effects.
Collapse
|
5
|
Terrié E, Déliot N, Benzidane Y, Harnois T, Cousin L, Bois P, Oliver L, Arnault P, Vallette F, Constantin B, Coronas V. Store-Operated Calcium Channels Control Proliferation and Self-Renewal of Cancer Stem Cells from Glioblastoma. Cancers (Basel) 2021; 13:cancers13143428. [PMID: 34298643 PMCID: PMC8307764 DOI: 10.3390/cancers13143428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma is a high-grade primary brain tumor that contains a subpopulation of cells called glioblastoma stem cells, which are responsible for tumor initiation, growth and recurrence after treatment. Recent transcriptomic studies have highlighted that calcium pathways predominate in glioblastoma stem cells. Calcium channels have the ability to transduce signals from the microenvironment and are therefore ideally placed to control cellular behavior. Using multiple approaches, we demonstrate in five different primary cultures, previously derived from surgical specimens, that glioblastoma stem cells express store-operated channels (SOC) that support calcium entry into these cells. Pharmacological inhibition of SOC dramatically reduces cell proliferation and stem cell self-renewal in these cultures. By identifying SOC as a critical mechanism involved in the maintenance of the stem cell population in glioblastoma, our study will contribute to the framework for the identification of new therapies against this deadly tumor. Abstract Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.
Collapse
Affiliation(s)
- Elodie Terrié
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Nadine Déliot
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Yassine Benzidane
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Thomas Harnois
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Laëtitia Cousin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Patrick Bois
- EA 4379, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France;
| | - Lisa Oliver
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
| | - Patricia Arnault
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - François Vallette
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Bruno Constantin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Valérie Coronas
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)5-49-45-36-55
| |
Collapse
|
6
|
GSK-7975A, an inhibitor of Ca 2+ release-activated calcium channels, depresses isometric contraction of mouse aorta. Eur J Pharmacol 2021; 906:174197. [PMID: 34052216 DOI: 10.1016/j.ejphar.2021.174197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022]
Abstract
GSK-7975A is described to inhibit stromal interaction molecule 1(STIM1)-mediated Ca2+ release-activated Ca2+ channels ORAI 1, ORAI 2 and ORAI 3 in different cell types. The present study investigated whether isometric contractions of mouse aortic segments were affected by this selective store-operated calcium channel inhibitor. Depending on the way by which Ca2+ influx pathways were activated during contraction, GSK-7975A inhibited contractility of mouse aortic segments with different affinity. When contractile effects were induced by depolarization as with elevated extracellular K+ and opening of voltage-gated calcium channels, the affinity was approximately 10 times lower than when contraction was elicited with Ca2+ influx via non-selective cation channels. GSK-7975A may repolarize the aortic smooth muscle cells by inhibiting non-selective cation channels, has no effect on IP3-mediated phenylephrine-induced phasic contractions or on refilling of the contractile sarcoplasmic reticulum Ca2+ store, but has significant effects on non-contractile store-operated Ca2+ influx.
Collapse
|
7
|
Liu G, Fu D, Tian H, Dai A. The mechanism of ions in pulmonary hypertension. Pulm Circ 2021; 11:2045894020987948. [PMID: 33614016 PMCID: PMC7869166 DOI: 10.1177/2045894020987948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension(PH)is a kind of hemodynamic and pathophysiological state, in which the pulmonary artery pressure (PAP) rises above a certain threshold. The main pathological manifestation is pulmonary vasoconstriction and remodelling progressively. More and more studies have found that ions play a major role in the pathogenesis of PH. Many vasoactive substances, inflammatory mediators, transcription-inducing factors, apoptosis mediators, redox substances and translation modifiers can control the concentration of ions inside and outside the cell by regulating the activity of ion channels, which can regulate vascular contraction, cell proliferation, migration, apoptosis, inflammation and other functions. We all know that there are no effective drugs to treat PH. Ions are involved in the occurrence and development of PH, so it is necessary to clarify the mechanism of ions in PH as a therapeutic target for PH. The main ions involved in PH are calcium ion (Ca2+), potassium ion (K+), sodium ion (Na+) and chloride ion (Cl-). Here, we mainly discuss the distribution of these ions and their channels in pulmonary arteries and their role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Guogu Liu
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Heshen Tian
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Hunan University of Chinese
Medicine, Changsha, China
| |
Collapse
|
8
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
9
|
TRPC and TRPV Channels' Role in Vascular Remodeling and Disease. Int J Mol Sci 2020; 21:ijms21176125. [PMID: 32854408 PMCID: PMC7503586 DOI: 10.3390/ijms21176125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. In this review, we provide an overview of the current knowledge on the implication of TRPC and TRPV in the physiological and pathological processes of some frequent vascular diseases.
Collapse
|