1
|
Marinina KS, Bezprozvanny IB, Egorova PA. A combination of chlorzoxazone and folic acid improves recognition memory, anxiety and depression in SCA3-84Q mice. Hum Mol Genet 2024; 33:1406-1419. [PMID: 38727562 PMCID: PMC11305683 DOI: 10.1093/hmg/ddae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 08/09/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| | - Ilya B Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, United States
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| |
Collapse
|
2
|
Marinina KS, Bezprozvanny IB, Egorova PA. Cognitive Decline and Mood Alterations in the Mouse Model of Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2024; 23:145-161. [PMID: 36680704 DOI: 10.1007/s12311-023-01520-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a hereditary disorder, caused by an expansion of polyglutamine in the ataxin-2 protein. Although the mutant protein is expressed throughout all the cell and organ types, the cerebellum is primarily affected. The disease progression is mainly accompanied by a decline in motor functions. However, the disturbances in cognitive abilities and low mental state have also been reported in patients. Recent evidence suggests that the cerebellar functionality expands beyond the motor control. Thus, the cerebellum turned out to be involved into the language, verbal working, and spatial memory; executive functions such as working memory, planning, organizing, and strategy formation; and emotional processing. Here, we used the transgenic SCA2-58Q mice to evaluate their anxiety, cognitive functions, and mood alterations. The expression of the mutant ataxin-2 specifically in the cerebellar Purkinje cells (PCs) in SCA2-58Q mice allowed us to study the direct involvement of the cerebellum into the cognitive and affective control. We determined that SCA2-58Q mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Our results support the idea of cerebellar involvement in cognitive control and the handling of emotions.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.
| |
Collapse
|
3
|
Marinina KS, Bezprozvanny IB, Egorova PA. A chlorzoxazone-folic acid combination improves cognitive affective decline in SCA2-58Q mice. Sci Rep 2023; 13:12588. [PMID: 37537226 PMCID: PMC10400576 DOI: 10.1038/s41598-023-39331-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a polyglutamine disorder caused by a pathological expansion of CAG repeats in ATXN2 gene. SCA2 is accompanied by cerebellar degeneration and progressive motor decline. Cerebellar Purkinje cells (PCs) seem to be primarily affected in this disorder. The majority of the ataxia research is focused on the motor decline observed in ataxic patients and animal models of the disease. However, recent evidence from patients and ataxic mice suggests that SCA2 can also share the symptoms of the cerebellar cognitive affective syndrome. We previously reported that SCA2-58Q PC-specific transgenic mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Here we studied the effect of the activation of the small conductance calcium-activated potassium channels (SK channels) by chlorzoxazone (CHZ) combined with the folic acid (FA) on the PC firing and also motor, cognitive and affective symptoms in SCA2-58Q mice. We realized that CHZ-FA combination improved motor and cognitive decline as well as ameliorated mood alterations in SCA2-58Q mice without affecting the firing rate of their cerebellar PCs. Our results support the idea of the combination therapy for both ataxia and non-motor symptoms in ataxic mice without affecting the firing frequency of PCs.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| |
Collapse
|
4
|
Egorova PA, Marinina KS, Bezprozvanny IB. Chronic suppression of STIM1-mediated calcium signaling in Purkinje cells rescues the cerebellar pathology in spinocerebellar ataxia type 2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119466. [PMID: 36940741 DOI: 10.1016/j.bbamcr.2023.119466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Egorova PA, Bezprozvanny IB. Electrophysiological Studies Support Utility of Positive Modulators of SK Channels for the Treatment of Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2022; 21:742-749. [PMID: 34978024 DOI: 10.1007/s12311-021-01349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an incurable hereditary disorder accompanied by cerebellar degeneration following ataxic symptoms. The causative gene for SCA2 is ATXN2. The ataxin-2 protein is involved in RNA metabolism; the polyQ expansion may interrupt ataxin-2 interaction with its molecular targets, thus representing a loss-of-function mutation. However, mutant ataxin-2 protein also displays the features of gain-of-function mutation since it forms the aggregates in SCA2 cells and also enhances the IP3-induced calcium release in affected neurons. The cerebellar Purkinje cells (PCs) are primarily affected in SCA2. Their tonic pacemaker activity is crucial for the proper cerebellar functioning. Disturbances in PC pacemaking are observed in many ataxic disorders. The abnormal intrinsic pacemaking was reported in mouse models of episodic ataxia type 2 (EA2), SCA1, SCA2, SCA3, SCA6, Huntington's disease (HD), and in some other murine models of the disorders associated with the cerebellar degeneration. In our studies using SCA2-58Q transgenic mice via cerebellar slice recording and in vivo recording from urethane-anesthetized mice and awake head-fixed mice, we have demonstrated the impaired firing frequency and irregularity of PCs in these mice. PC pacemaker activity is regulated by SK channels. The pharmacological activation of SK channels has demonstrated some promising results in the electrophysiological experiments on EA2, SCA1, SCA2, SCA3, SCA6, HD mice, and also on mutant CACNA1A mice. In our studies, we have reported that the SK activators CyPPA and NS309 converted bursting activity into tonic, while oral treatment with CyPPA and NS13001 significantly improved motor performance and PC morphology in SCA2 mice. The i.p. injections of chlorzoxazone (CHZ) during in vivo recording sessions converted bursting cells into tonic in anesthetized SCA2 mice. And, finally, long-term injections of CHZ recovered the precision of PC pacemaking activity in awake SCA2 mice and alleviated their motor decline. Thus, the SK activation can be used as a potential way to treat SCA2 and other diseases accompanied by cerebellar degeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
El-Sayed NS, Nam YW, Egorova PA, Nguyen HM, Orfali R, Rahman MA, Yang G, Wulff H, Bezprozvanny I, Parang K, Zhang M. Structure-Activity Relationship Study of Subtype-Selective Positive Modulators of K Ca2 Channels. J Med Chem 2022; 65:303-322. [PMID: 34962403 PMCID: PMC8758555 DOI: 10.1021/acs.jmedchem.1c01473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Ulitsa, 29, St. Petersburg, 195251, Russia
| | - Hai Minh Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Ulitsa, 29, St. Petersburg, 195251, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Khiroug L, Verkhratsky A. Coming full circle: In vivo Veritas, or expanding the neuroscience frontier. Cell Calcium 2021; 98:102452. [PMID: 34399234 DOI: 10.1016/j.ceca.2021.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
The 25-century long history of brain science can be divided into four distinct 'Eras': Era 1 (∼2000 years) started around 500 BC with reductionist studies of human and animal brains using invasive in vivo and ex vivo methods; Era 2 (∼200 years) started in the 17th century and introduced the first invasive methods to study the function of living tissues; Era 3 started around 1838 and is the ongoing era of cellular neurophysiology; finally, Era 4 (in statu nascendi) is the era of non-invasive, holistic yet mechanistic, studies of the brain. Animal experimentation is becoming increasingly more holistic as multimodal imaging and recording techniques are combined in a single experiment on the brain of awake behaving animal. This newly emerged approach can be called in vigilo (from Latin 'in awake' or 'in vigilant state'), by analogy to the earlier introduced terms in vivo or in vitro. We introduce the Special Issue "In Vigilo Veritas: New Frontiers of Optical Imaging and Electrical Recording in the Brain of Awake Behaving Mice", which features original research articles and reviews that represent some of the finest examples of a truly multimodal studies, where behavioural readouts and tasks are combined in the same longitudinal experiment and on the same mouse with the two-photon imaging, optogenetics and/or electrophysiological recordings. This exciting multi-methodological approach creates a fertile ground for breakthrough discoveries in neurophysiology and neuropsychology of an awake behaving mammalian brain.
Collapse
Affiliation(s)
- Leonard Khiroug
- Neuroscience Center, University of Helsinki, 00790 Helsinki, Finland.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|