1
|
Calle-Ciborro B, Santos FJ, Espin-Jaime T, Gomez-Martin A, Camello PJ, Camello-Almaraz C. Pharmacological inhibition reveals participation of the endocytic compartment in positive feedback IL-6 secretion in human skeletal myotubes. Eur J Pharmacol 2024; 984:177055. [PMID: 39395584 DOI: 10.1016/j.ejphar.2024.177055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
IL-6 is an important cytokine involved in metabolic, immunological, and cell-fate responses. It is released upon stimulation by skeletal muscle cells through partially characterized mechanisms. In some cell types, IL-6 has been reported to activate a positive feedback loop involving endocytic vesicles, but evidence is mostly based on transcription and signal transduction mechanisms and is very scarce in muscle cells. Our aim was to directly demonstrate the presence of positive feedback in the ATP-induced release of IL-6 into the supernatant of human skeletal muscle cultures. The total release (production) of IL-6 was reduced for higher volumes of supernatant, when the secreted IL-6 molecules are more diluted, and enhanced when the supernatant volume was lower. In addition, secretion was impaired both by tocilizumab, a blocker of human IL-6 receptors, and by the soluble form of the receptor. The secretion in response to ATP was also inhibited by treatment with the endocytosis inhibitor dynasore, and by disruption of the acidic gradient of the endocytic compartment using different methods (chloroquine, NH4Cl or monensin). IL-6 secretion was also impaired by NED-19, a specific inhibitor of the two pore channels receptor mediating Ca2+ release from the endolysosomal compartment. IL-6 and ATP increased IL-6 mRNA levels, an effect blocked by tocilizumab. Altogether, our results demonstrate that ATP-secreted IL-6 activates a positive loop based on IL-6 receptors, endocytosis, two pore channels and IL-6 transcription. Given the importance of muscle IL-6 as a systemic regulator and as an inflammatory mediator, our study can help to understand muscle pathophysiology.
Collapse
Affiliation(s)
- Blanca Calle-Ciborro
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Ana Gomez-Martin
- Dept. of Nursing, Facultad de Enfermeria y Terapia Ocupacional, Cáceres, Spain
| | - Pedro J Camello
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain.
| | - Cristina Camello-Almaraz
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
2
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
5
|
Galione A, Muallem S. Preface. Endolysosomal calcium signalling. Cell Calcium 2023; 110:102696. [PMID: 36680894 DOI: 10.1016/j.ceca.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Li X, Li B, Li J, Yang M, Bai Y, Chen K, Chen Z, Mao N. Mechanistic insights into the role of calcium in the allosteric regulation of the calmodulin-regulated death-associated protein kinase. Front Mol Biosci 2022; 9:1104942. [PMID: 36601586 PMCID: PMC9806222 DOI: 10.3389/fmolb.2022.1104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Calcium (Ca2+) signaling plays an important role in the regulation of many cellular functions. Ca2+-binding protein calmodulin (CaM) serves as a primary effector of calcium function. Ca2+/CaM binds to the death-associated protein kinase 1 (DAPK1) to regulate intracellular signaling pathways. However, the mechanism underlying the influence of Ca2+ on the conformational dynamics of the DAPK1-CaM interactions is still unclear. Here, we performed large-scale molecular dynamics (MD) simulations of the DAPK1-CaM complex in the Ca2+-bound and-unbound states to reveal the importance of Ca2+. MD simulations revealed that removal of Ca2+ increased the anti-correlated inter-domain motions between DAPK1 and CaM, which weakened the DAPK1-CaM interactions. Binding free energy calculations validated the decreased DAPK1-CaM interactions in the Ca2+-unbound state. Structural analysis further revealed that Ca2+ removal caused the significant conformational changes at the DAPK1-CaM interface, especially the helices α1, α2, α4, α6, and α7 from the CaM and the basic loop and the phosphate-binding loop from the DAPK1. These results may be useful to understand the biological role of Ca2+ in physiological processes.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bo Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingyuan Yang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Kai Chen
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| |
Collapse
|
7
|
GABA A and GABA B Receptors Mediate GABA-Induced Intracellular Ca 2+ Signals in Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233860. [PMID: 36497118 PMCID: PMC9739010 DOI: 10.3390/cells11233860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.
Collapse
|
8
|
Two-pore channels: going with the flows. Biochem Soc Trans 2022; 50:1143-1155. [PMID: 35959977 PMCID: PMC9444070 DOI: 10.1042/bst20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
In recent years, our understanding of the structure, mechanisms and functions of the endo-lysosomal TPC (two-pore channel) family have grown apace. Gated by the second messengers, NAADP and PI(3,5)P2, TPCs are an integral part of fundamental signal-transduction pathways, but their array and plasticity of cation conductances (Na+, Ca2+, H+) allow them to variously signal electrically, osmotically or chemically. Their relative tissue- and organelle-selective distribution, together with agonist-selective ion permeabilities provides a rich palette from which extracellular stimuli can choose. TPCs are emerging as mediators of immunity, cancer, metabolism, viral infectivity and neurodegeneration as this short review attests.
Collapse
|
9
|
Unexpected Motherhood-Triggered Hearing Loss in the Two-Pore Channel (TPC) Mutant Mouse. Biomedicines 2022; 10:biomedicines10071708. [PMID: 35885013 PMCID: PMC9312904 DOI: 10.3390/biomedicines10071708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Calcium signaling is crucial for many physiological processes and can mobilize intracellular calcium stores in response to environmental sensory stimuli. The endolysosomal two-pore channel (TPC), regulated by the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), is one of the key components in calcium signaling. However, its role in neuronal physiology remains largely unknown. Here, we investigated to what extent the acoustic thresholds differed between the WT mice and the TPC KO mice. We determined the thresholds based on the auditory brainstem responses (ABRs) at five frequencies (between 4 and 32 kHz) and found no threshold difference between the WT and KO in virgin female mice. Surprisingly, in lactating mothers (at P9–P10), the thresholds were higher from 8 to 32 kHz in the TPC KO mice compared to the WT mice. This result indicates that in the TPC KO mice, physiological events occurring during parturition altered the detection of sounds already at the brainstem level, or even earlier.
Collapse
|