1
|
Chalka VK, Mishra A, Chhabra M, Rangra K, Dhanekar S. A Lab Prototype for Rapid Electrochemical Detection of Escherichia coli in Water Using Modified Screen-Printed Electrodes. ACS APPLIED BIO MATERIALS 2024. [PMID: 39395010 DOI: 10.1021/acsabm.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Recognizing the need for a hand-held device capable of quantitatively measuring the concentration of bacteria in water, this paper describes a label-free method for rapid detection of Escherichia coli (E. coli) in water via H2O2 decomposition using screen-printed electrodes (SPE) modified with nanostructured metal oxide layers. The study encompasses sensor preparation, bacteria culture, synthesis and characterization of nanostructures, and development of a readout circuitry for lab prototyping. During sensing measurements, the bacteria are first made to interact with H2O2 and subsequently, the H2O2 solution is exposed on the sensing surface. The electrochemical sensors are fabricated by modifying the working electrode of SPE with nanostructured metal oxide layers of MnO2 and TiO2 as these play a crucial role in the detection of E. coli in water. The sensing experiments of MnO2-modified SPE show a significant response to bacteria with a sensitivity of 0.82 mV.mL/log CFU and a limit of detection (LOD) of 1.8 CFU/mL, while the TiO2-modified SPE exhibits a linear response over a wide range of bacterial concentrations with a sensitivity of 1.12 mV·mL/log CFU and a limit of detection of 2.23 CFU/mL. Both sensors demonstrate a rapid response, stability, repeatability, and a recovery time of 70 ms. Additionally, selectivity with respect to other bacteria, wastewater components such as glucose, ammonium sulfate, and sodium carbonate, and testing with RO, DI, and tap water samples are conducted to evaluate the sensors' performance. A detailed sensing mechanism has been developed to comprehend the results, including chemical and biological reactions, metal oxide interfaces, morphology, and other surface studies of the sensing surface. A prototype comprising a sensor chip, an Arduino board, and other necessary circuit components is tested with various bacterial solutions. This enables its use for on-field rapid detection of bacteria in water using smaller volumes and a portable system.
Collapse
Affiliation(s)
- Vandana Kumari Chalka
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
| | - Akanksha Mishra
- Department of Bioscience and Bioengineering, IIT Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
| | - Meenu Chhabra
- Department of Bioscience and Bioengineering, IIT Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
| | - Kamaljit Rangra
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
- Centre for AIoT and Applications, IIT Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
| | - Saakshi Dhanekar
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
- Centre for AIoT and Applications, IIT Jodhpur, N.H. 62, Karwar, Jodhpur 342030, Rajasthan, India
| |
Collapse
|
2
|
Linssen R, de Smit S, Röhring Neé Neubert K, Harnisch F, Ter Heijne A. Revealing cellular (poly)sulphide storage in electrochemically active sulphide oxidising bacteria using rotating disc electrodes. Bioelectrochemistry 2024; 158:108710. [PMID: 38636364 DOI: 10.1016/j.bioelechem.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Sulphide oxidising bacteria (SOB) have the potential to be used for bioelectrochemical removal, i.e. oxidation, of sulphide from waste streams. In anaerobic conditions, SOB are able to spatially separate sulphide removal and terminal electron transfer to an electrode and act as a sulphide shuttle. However, it is not fully understood how SOB anaerobically remove sulphide and store charge equivalents, and where in this process sulphur is formed. Therefore, the redox behaviour of sulphide shuttling SOB was investigated at haloalkaline conditions using a glassy carbon rotating disc electrode (RDE) and cyclic voltammetry. Voltammograms of SOB in the absence and presence of sulphide were compared to voltammograms of abiotic sulphur species solutions. Polysulphide and sulphide showed different redox behaviour, with distinct potentials for oxidation of > -0.3 V (vs. Ag/AgCl) for polysulphide and > -0.1 V for sulphide. Comparing biotic to abiotic experiments lead to the hypothesis that SOB formed polysulphides during anaerobic sulphide removal, which stayed sorbed to the cells. With this study, further steps were taken in elucidating the mechanisms of sulphide shuttling by SOB.
Collapse
Affiliation(s)
- Rikke Linssen
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands
| | - Sanne de Smit
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands
| | - Katharina Röhring Neé Neubert
- Department of Microbial Biotechnology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
3
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2024:1-21. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
Sharma A, Mishra A, Chhabra M. Rapid measurement of bacterial contamination in water: A catalase responsive-electrochemical sensor. Heliyon 2024; 10:e26724. [PMID: 38434288 PMCID: PMC10906405 DOI: 10.1016/j.heliyon.2024.e26724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.
Collapse
Affiliation(s)
| | | | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IITJ), Jodhpur, 342030, Rajasthan, India
| |
Collapse
|
5
|
Jiang L, Liu X, Zhao D, Guo J, Ma X, Wang Y. Intelligent sensing based on active micro/nanomotors. J Mater Chem B 2023; 11:8897-8915. [PMID: 37667977 DOI: 10.1039/d3tb01163a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In the microscopic world, synthetic micro/nanomotors (MNMs) can convert a variety of energy sources into driving forces to help humans perform a number of complex tasks with greater ease and efficiency. These tiny machines have attracted tremendous attention in the field of drug delivery, minimally invasive surgery, in vivo sampling, and environmental management. By modifying their surface materials and functionalizing them with bioactive agents, these MNMs can also be transformed into dynamic micro/nano-biosensors that can detect biomolecules in real-time with high sensitivity. The extensive range of operations and uses combined with their minuscule size have opened up new avenues for tackling intricate analytical difficulties. Here, in this review, various driving methods are briefly introduced, followed by a focus on intelligent detection techniques based on MNMs. And we discuss the distinctive advantages, current issues, and challenges associated with MNM-based intelligent detection. It is believed that the future advancements of MNMs will greatly impact the diagnosis, treatment, and prevention of diseases.
Collapse
Affiliation(s)
- Lingfeng Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoxia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Dongfang Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Jinhong Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Zhou Q, Natarajan B, Kannan P. Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli. Anal Bioanal Chem 2023:10.1007/s00216-023-04731-6. [PMID: 37169938 DOI: 10.1007/s00216-023-04731-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Bharathi Natarajan
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| | - Palanisamy Kannan
- Department of Endocrinology, First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), 1882 Zhonghuan South Road, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| |
Collapse
|
7
|
Tian JY, Liu X, Zhang S, Chen K, Zhu L, Song Y, Wang M, Zhang Z, Du M. Novel aptasensing strategy for efficiently quantitative analyzing Staphylococcus aureus based on defective copper-based metal–organic framework. Food Chem 2023; 402:134357. [DOI: 10.1016/j.foodchem.2022.134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
|
8
|
Fande S, Amreen K, Sriram D, Goel S. Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli. Anal Chim Acta 2022; 1237:340591. [DOI: 10.1016/j.aca.2022.340591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
9
|
Srikanth S, Jayapiriya U, Dubey SK, Javed A, Goel S. A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria. iScience 2022; 25:105388. [DOI: 10.1016/j.isci.2022.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
|
10
|
Yu Q, Chen X, Qi L, Yang H, Wang Y, Zhang M, Huang K, Yuan X. Smartphone readable colorimetry and ICP-MS dual-mode sensing platform for ultrasensitive and label-free detection of Escherichia coli based on filter-assisted separation. Talanta 2022; 251:123760. [DOI: 10.1016/j.talanta.2022.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
11
|
He K, Bu T, Zheng X, Xia J, Bai F, Zhao S, Sun XY, Dong M, Wang L. "Lighting-up" methylene blue-embedded zirconium based organic framework triggered by Al 3+ for advancing the sensitivity of E. coli O157:H7 analysis in dual-signal lateral flow immunochromatographic assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128034. [PMID: 34896715 DOI: 10.1016/j.jhazmat.2021.128034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The sensitive detection of foodborne pathogens is of great significance for ensuring food safety and quality. Herein, on the basis of methylene blue-embedded zirconium based organic framework (UIO@MB) as the remarkable capture carrier and signal indicator, with the Al3+-assisted the fluorescent signal response, we developed a label-free and dual-signal lateral flow immunochromatographic assay (LDLFIA) for sensitive detection of Escherichia coli (E. coli) O157:H7. The UIO@MB sensing carrier without monoclonal antibodies (mAbs) was manufactured, which adhered to bacteria to form the UIO@MB-E. coli O157:H7 conjugate, resulting in visible blue band. Then the fluorescent response of the OH-rich UIO@MB was excited by introducing Al3+, arising from capturing of Al3+ by -OH through coordination and electrostatic affinity, thus generating a green fluorescent band. Impressively, a smartphone-based portable reading system was developed that can reflect the test results of UIO@MB-LDLFIA immediately. Under optimum conditions, UIO@MB-LDLFIA can complete colorimetric and fluorescent mode detection within 90 min, with a detection sensitivity of 103 CFU/mL, which were 100 times lower than traditional gold nanoparticles-based LFIA and polymerase chain reaction (PCR). Moreover, the feasibility of the method was further evaluated by the determination of E. coli O157: H7 in drinking water and cabbage with average recoveries of 85.1-123.0%.
Collapse
Affiliation(s)
- Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Yu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Kadadou D, Tizani L, Wadi VS, Banat F, Alsafar H, Yousef AF, Barceló D, Hasan SW. Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107070. [PMID: 34976725 PMCID: PMC8701687 DOI: 10.1016/j.jece.2021.107070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool for infectious diseases. Biosensors are far superior to conventional methods used for regular infection screening and surveillance testing. They are rapid, sensitive, inexpensive portable and carry no risk of exposure in their detection schemes. In this context, this review summarizes the most recently developed biosensors for the detection of bacteria and viruses in wastewater. The review also provides information on the new detection methods aimed at screening for SARS-CoV-2, which has now caused more than 4 million deaths. In addition, the review highlights the potential behind on-line and real-time detection of pathogens in wastewater pipelines. Most of the biosensors reported were not targeted to wastewater samples due to the complexity of the matrix. However, this review highlights on the performance factors of recently developed biosensors and discusses the importance of nanotechnology in amplifying the output signals, which in turn increases the accuracy and reliability of biosensors. Current research on the applicability of biosensors in wastewater promises a dramatic change to the conventional approach in the field of medical screening.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer de Jordi Girona 1826, 08034 Barcelona, Spain
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Jeon JH, Cueva Sola AB, Lee JY, Koduru JR, Jyothi RK. Separation of vanadium and tungsten from synthetic and spent catalyst leach solutions using an ion-exchange resin. RSC Adv 2022; 12:3635-3645. [PMID: 35425374 PMCID: PMC8979341 DOI: 10.1039/d1ra05253e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/15/2022] [Indexed: 12/28/2022] Open
Abstract
Vanadium and tungsten ion adsorption and desorption characteristics and separation conditions were investigated using a simple porous anion-exchange resin. Initially, systematic experimental research was performed using synthetic aqueous vanadium and tungsten solutions. To evaluate the vanadium and tungsten (50-500 mg L-1) isotherm parameters, adsorption was performed at pH 7.0 using 0.5 g of ion-exchange resin at 303 K for 24 h. Well-known adsorption models such as Langmuir, Freundlich, and Temkin were used. Vanadium was desorbed from the resin using HCl and NaOH solutions. In contrast, tungsten was not desorbed by the HCl solution, which enabled the separation of the two ions. The desorption reaction reached equilibrium within 30 min of its start, yielding over 90% desorption. We investigated the adsorption mechanism and resin stability with the aid of spectroscopic and microscopic analysis, as well as adsorption results. The applicability and feasibility of the resin was tested via recovery of both metals from real spent catalysts. The applicability and reusability results indicated that the resin can be used for more than five cycles with an efficacy of over 90%.
Collapse
Affiliation(s)
- Jong Hyuk Jeon
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
| | - Ana Belen Cueva Sola
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resources Engineering, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| | - Jin-Young Lee
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resources Engineering, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University Nowon-gu Seoul 01897 Korea
| | - Rajesh Kumar Jyothi
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resources Engineering, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| |
Collapse
|
14
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
15
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Ultra-Fast Electrochemical Sensor for Point-of-Care COVID-19 Diagnosis Using Non-Invasive Saliva Sampling. Processes (Basel) 2021. [DOI: 10.3390/pr9071236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Point-of-care diagnostic devices that are rapid and reliable remain as an unmet need highlighted by the coronavirus disease (COVID-19) pandemic crisis. The second/third wave of virus spread in various parts of the world combined with new evidence of re-infections and inadequate healthcare facilities demand increased testing rate to diagnose COVID-19 at its core. Although traditional molecular diagnostic tests have served this purpose, there have been shortage of reagents and other supplies at pandemic frontlines. This calls for novel alternate diagnostic processes with potential for obtaining emergency use authorization and that can be deployed in the field at the earliest opportunity. Here, we show an ultra-fast SARS-CoV-2 detection sensor for detecting coronavirus proteins in saliva within 100 milliseconds. Electrochemical oxidation of nickel hydroxide has been controlled using cyclic voltammetry and chronoamperometry techniques for successful detection of SARS-CoV-2. Test results have proven the capability of sensors to quantitatively detect the concentration of virus in blinded analyses. The detection occurs by a process similar to that of SARS-CoV-2 binding onto host cells. The sensor also shows prospects in distinguishing SARS-CoV-2 from other viruses such as HIV. More importantly, the sensor matches the detection limit of the gold standard test for diagnosing early infection. The use of saliva as a non-invasive sampling technique combined with the portability of the instrument has broadened the potential of this sensor.
Collapse
|
17
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|