1
|
Morales MV, Conesa JM, Campos-Castellanos E, Guerrero-Ruiz A, Rodríguez-Ramos I. Critical Factors Affecting the Selective Transformation of 5-Hydroxymethylfurfural to 3-Hydroxymethylcyclopentanone Over Ni Catalysts. CHEMSUSCHEM 2024:e202400559. [PMID: 38860533 DOI: 10.1002/cssc.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The ring-rearrangement of 5-hydroxymethylfurfural (HMF) to 3-hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid-base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non-water path leading to the total hydrogenation product, 2,5-di-hydroxymethyl-tetrahydrofuran (DHMTHF), and two parallel acid-catalyzed water-mediated routes responsible for (ii) ring-opening and (iii) ring-rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min-1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG-ox (initial TOF=5.92 min-1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
Collapse
Affiliation(s)
- María V Morales
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
| | - José M Conesa
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
| | | | - Antonio Guerrero-Ruiz
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
- Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, Unidad Asociada UNED-CSIC (ICP), Spain
| | - Inmaculada Rodríguez-Ramos
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, Unidad Asociada UNED-CSIC (ICP), Spain
| |
Collapse
|
2
|
Buta JG, Dame B, Ayala T. Nitrogen-doped ordered mesoporous carbon supported ruthenium metallic nanoparticles: Opportunity for efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran by catalytic transfer hydrogenation. Heliyon 2024; 10:e26690. [PMID: 38455557 PMCID: PMC10918172 DOI: 10.1016/j.heliyon.2024.e26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
One of the most promising solutions to the current energy crisis is an efficient catalytic transformation of abundant low-cost renewable raw biomass into high-quality biofuel. Herein, a highly effective catalyst was constructed systematically for the selective synthesis of 2,5-dimethylfuran (DMF) biofuel from biomass-derived 5-hydroxymethylfurfural (HMF) via green catalytic transfer hydrogenolysis (CTH) using a nitrogen-doped ordered mesoporous carbon (N-CMK-1) decorated ruthenium (Ru)-based catalyst in i-propanol as hydrogen source. The structures and properties of different catalysts were characterized by different characterization techniques such as FTIR, XRD, N2-sorption, CO2-sorption, TGA, TEM, ICP-AES, CHNO analysis, and acid-base back titration. A complete HMF conversion with a high DMF yield of 88% was achieved under optimized reaction conditions. Regarding substrate conversion and product yield, the influence of reaction temperature, time, and hydrogen donors was thoroughly investigated. The nitrogen-promoted carbon support enhanced the dispersion of Ru due to the formation of appropriate basic site density which could efficiently promote the activation of alcohol hydroxyl in i-propanol and subsequent release of active hydrogen species. In the meantime, highly dispersed surface Ru nanoparticles (NPs) were beneficial for hydrogen transfer and activation of both carbonyl and hydroxyl groups in HMF. Moreover, Arrhenius kinetic analysis was studied by identifying 5-methyl furfural (5-MF) and 2,5-bishydroxymethylfuran (BHMF) as two key intermediates that dominate a distinct reaction pathway during hydrogenolysis of HMF to DMF via CTH. Furthermore, high stability without obvious loss of activity after three consecutive cycles was observed in a fabricated N-CMK-1 decorated Ru-based catalyst as a result of superior metal-support interaction and the mesoporous framework nature of the catalyst. These findings would not only offer a robust catalyst synthetic approach but also open a new avenue for the exploitation of biomass to specialty chemicals and advanced biofuels.
Collapse
Affiliation(s)
- Jibril Goli Buta
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Bayisa Dame
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Tariku Ayala
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
3
|
Deshan AK, Moghaddam L, Atanda L, Wang H, Bartley JP, Doherty WO, Rackemann DW. High Conversion of Concentrated Sugars to 5-Hydroxymethylfurfural over a Metal-free Carbon Catalyst: Role of Glucose-Fructose Dimers. ACS OMEGA 2023; 8:40442-40455. [PMID: 37929081 PMCID: PMC10620938 DOI: 10.1021/acsomega.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
To reduce the production cost of chemicals from renewable resources, the feedstock loading must be high and the catalyst must be of low cost and efficient. In this study, at a very short reaction time of 10 min at 125 °C, concentrated sugar solutions (20 wt %, 101 wt % on solvent) were converted to 5-hydroxymethylfurfural (HMF) over a cotton gin trash (CGT)-derived sulfonated carbon catalyst in a 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 2-methyltetrahydrofuran (MeTHF) biphasic system. We report, for the first time, that the presence of glucose either as a covalently bonded monomer in sucrose or in a mixture with fructose achieved yields of HMF up to 62 mol % compared to a value of only 39 mol % obtained with fructose on its own. In the concentrated reaction medium, glucose, fructose, and sucrose molecules produce difructose anhydrides, dimers/reversion products, and sucrose isomers. The glucose-fructose dimers formed in sucrose and glucose/fructose reaction systems play a critical role in the transformation of the sugars to a higher-than-expected HMF yield. Thus, a strategy of using cellulosic glucose, where it is partially converted to fructose content and the high sugar concentration sugar mixture is then converted to HMF, should be exploited for future biorefineries.
Collapse
Affiliation(s)
- Athukoralalage
Don K. Deshan
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Lalehvash Moghaddam
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Luqman Atanda
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Hongxia Wang
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - John P. Bartley
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - William O.S. Doherty
- Faculty
of Science and Engineering, Southern Cross
University, Lismore, New South Wales 2480, Australia
- Doherty
Consulting Services, 3 Lillydale, Place, Calamvale, Brisbane, Queensland 4116, Australia
| | - Darryn W. Rackemann
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
4
|
Gao X, Luo B, Hong Y, He P, Zhang Z, Wu G. Controllable synthesis of a large TS-1 catalyst for clean epoxidation of a C=C double bond under mild conditions. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Liu Y, Shi X, Hu J, Liu K, Zeng M, Hou Y, Wei Z. Highly Effective Activated Carbon-Supported Ni-Mn Bifunctional Catalyst for Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran. CHEMSUSCHEM 2022; 15:e202200193. [PMID: 35333002 DOI: 10.1002/cssc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Designing highly efficient and low-cost catalysts for conversion of renewable biomass into high value-added chemicals and biofuels is important and challenging. Herein, a non-noble Ni-Mn bifunctional catalyst supported on activated carbon (Ni-Mn/AC) was developed by an incipient wetness impregnation method. The catalyst was found to be economic and efficient for the selective hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural (5-HMF) to 2,5-dimethylfuran (2,5-DMF). The optimal Ni-Mn/AC (Ni/Mn=3) catalyst achieved 98.5 % 2,5-DMF yield with 100 % conversion of 5-HMF under mild reaction conditions of 180 °C, 2.0 MPa H2 for 4 h. Furthermore, the catalyst exhibited outstanding reusability and could be recycled eight times without loss of activity. The addition of Mn not only enhanced the reactivity of 5-HMF but also resulted in the dominant reaction pathway shift from the hydrogenation of the C=O bond to the hydrogenolysis of C-OH bond, which was attributed to the synergy of highly dispersed Ni metallic nanoparticles and moderate Lewis acid sites from MnOx as revealed by detailed characterizations.
Collapse
Affiliation(s)
- Yingxin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xiaoyang Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Jinbo Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Kai Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Mao Zeng
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Yaxin Hou
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou Jiuhua Boulevard North, 324000, Quzhou, P. R. China
| |
Collapse
|
6
|
Zhao W, Zhu X, Zeng Z, Lei J, Huang Z, Xu Q, Liu X, Yang Y. Cu-Co nanoparticles supported on nitrogen-doped carbon: An efficient catalyst for hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hao P, Zuo J, Tong W, Lin J, Wang Q, Liu Z. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst. Front Chem 2022; 10:882670. [PMID: 35494636 PMCID: PMC9039160 DOI: 10.3389/fchem.2022.882670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
A new type of biomass-based liquid fuel, 2,5-dimethylfuran (DMF), has attracted significant attention owing to its unique physical properties and carbon neutrality. It can be obtained from the hydrogenation of 5-hydroxymethylfurfural (HMF), an important biomass platform compound. In this study, we developed a nitrogen-doped carbon-confined CuCo bimetallic catalyst with a popcorn-like structure for the selective hydrogenation of HMF with high efficiency and adequate stability. Under optimized conditions, 100% HMF conversion and 93.7% DMF selectivity were achieved. The structure of the catalyst was characterized using XRD, XPS, SEM, and TEM. It was observed that carbon spheres, which were covered by nitrogen-doped carbon nanotubes, uniformly formed, while metal particles were confined in the nitrogen-doped carbon nanotubes. The popcorn-like structure exhibited a larger surface area and provided more contact sites, while the confined metal particles were the main active sites. The synergistic effect between Cu and Co was beneficial for DMF selectivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Zili Liu
- *Correspondence: Jianliang Zuo, ; Zili Liu,
| |
Collapse
|
8
|
Xia J, Gao D, Han F, Li Y, Waterhouse GIN. Efficient and Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over a Non-noble CoNCx/NiFeO Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-03919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|