1
|
Trigui H, Matthews S, Bedard E, Charron D, Chea S, Fleury C, Maldonado JFG, Rivard M, Faucher SP, Prévost M. Assessment of monitoring approaches to control Legionella pneumophila within a complex cooling tower system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175136. [PMID: 39084374 DOI: 10.1016/j.scitotenv.2024.175136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Precise and rapid methods are needed to improve monitoring approaches of L. pneumophila (Lp) in cooling towers (CTs) to allow timely operational adjustments and prevent outbreaks. The performance of liquid culture (ASTM D8429-21) and an online qPCR device were first compared to conventional filter plate culture (ISO 11731-2017), qPCR and semi-automated qPCR at three spiked concentrations of Lp (serogroup 1) validated by flow cytometry (total/viable cell count). The most accurate was qPCR, followed by liquid culture, online and semi-automated qPCR, and lastly, by a significant margin, filter plate culture. An industrial CT system was monitored using liquid and direct plate culture by the facility, qPCR and online qPCR. Direct plate and liquid culture results agreed at regulatory sampling point, supporting the use of the faster liquid culture for monitoring culturable Lp. During initial operation, qPCR and online qPCR results were within one log of culture at the primary pump before deviating after first cleaning. Other points revealed high spatial variability of Lp. The secondary pumps and chiller had the most positivity and highest concentrations by both qPCR and liquid culture compared to the basin and infeed tank. Altogether, this suggests that results from monthly compliance sampling at a single location with plate culture are not representative of Lp risks in this CT due to the high temporal and spatial variability. The primary pump, rather than the CT basin, should be designated for sampling, as it is representative of the health risk. An annual multi point survey of the system should be conducted to identify and target Lp hot spots. Generally, a combination of liquid culture for compliance and frequent qPCR for process control provides a more agile and robust monitoring scheme than plate culture alone, enabling early treatment adjustments, due to lower limit of detection (LOD) and turnover time.
Collapse
Affiliation(s)
- Hana Trigui
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada
| | - Sara Matthews
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Québec, Canada
| | - Emilie Bedard
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada
| | - Dominique Charron
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada.
| | - Sakona Chea
- Direction de l'épuration des eaux usées, Service de l'eau, Ville de Montréal, Montréal H1C 1V3, Québec, Canada
| | - Carole Fleury
- Direction de l'épuration des eaux usées, Service de l'eau, Ville de Montréal, Montréal H1C 1V3, Québec, Canada
| | - Juan Francisco Guerra Maldonado
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada
| | - Mélanie Rivard
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Québec, Canada
| | - Michèle Prévost
- Polytechnique Montréal, Civil, Geological and Mining Engineering Dpt., P.O. Box 6079, Succ. Centre-ville, Montréal H3C 3A7, Québec, Canada
| |
Collapse
|
2
|
Gu P, Wang Y, Wu H, Chen L, Zhang Z, Yang K, Zhang Z, Ren X, Miao H, Zheng Z. Efficient control of cyanobacterial blooms with calcium peroxide: Threshold and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163591. [PMID: 37087006 DOI: 10.1016/j.scitotenv.2023.163591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
This study explored the feasibility and mechanism of cyanobacterial blooms control by calcium peroxide (CaO2). The obtained results demonstrated a strong inhibitory effect of CaO2 on cyanobacterial growth. The removal chlorophyll-a rate reached 31.4 %, while optimal/maximal quantum yield of PSII (Fv/Fm) decreased to 50 % after CaO2 treatment at a concentration of 100 mg L-1 for 96 h. Two main mechanisms were involved in the treatment of cyanobacterial bloom with CaO2, namely oxidative damage and cyanobacterial colony formation. It was found that CaO2 released reactive oxygen species (ROS), namely hydroxyl radicals (·OH), singlet oxygen (1O2), and superoxide radicals (·O2-), inhibiting the activity of antioxidant enzymes in cyanobacterial cells and resulting in intracellular oxidation imbalance. Cyanobacteria can resist oxidative damage by releasing extracellular polymeric substances (EPS). These EPS can combine with CaO2-derived Ca, forming large cyanobacterial aggregates and, consequently, accelerating cell sedimentation. In addition, CaO2 caused programmed cell death (PCD) of cyanobacteria and irreversible damage to the ultrastructure characteristic of the cyanobacterial cells. The apoptotic rate was greatly improved at 100 mg L-1 CaO2. On the other hand, the results obtained using qRT-PCR analysis confirmed the contribution of CaO2 to the down-regulation of photosynthesis-related genes (rbcL and psaB), the up-regulation of microcystins (mcyA and mcyD), the up-regulation of the oxidation system: peroxiredoxin (prx) through oxidative mechanisms. The present study proposes a novel treatment method for water-containing cyanobacterial blooms using CaO2.
Collapse
Affiliation(s)
- Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Yuting Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Liqi Chen
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| |
Collapse
|
3
|
Impact of Stagnation on the Diversity of Cyanobacteria in Drinking Water Treatment Plant Sludge. Toxins (Basel) 2022; 14:toxins14110749. [PMID: 36355999 PMCID: PMC9697381 DOI: 10.3390/toxins14110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge.
Collapse
|
4
|
Jalili F, Moradinejad S, Zamyadi A, Dorner S, Sauvé S, Prévost M. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins (Basel) 2022; 14:toxins14060410. [PMID: 35737071 PMCID: PMC9228313 DOI: 10.3390/toxins14060410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can enhance coagulation efficiency as it provides the first barrier against cyanobacteria and cyanotoxins and it decreases cell accumulation in DWTP sludge. This critical review aims to: (i) evaluate the state of the science of cyanobacteria and cyanotoxin management throughout DWTPs, as well as their associated sludge, and (ii) develop a decision framework to manage cyanobacteria and cyanotoxins in DWTPs and sludge. The review identified that lab-cultured-based pre-oxidation studies may not represent the real bloom pre-oxidation efficacy. Moreover, the application of a common exposure unit CT (residual concentration × contact time) provides a proper understanding of cyanobacteria pre-oxidation efficiency. Recently, reported challenges on cyanobacterial survival and growth in sludge alongside the cell lysis and cyanotoxin release raised health and technical concerns with regards to sludge storage and sludge supernatant recycling to the head of DWTPs. According to the review, oxidation has not been identified as a feasible option to handle cyanobacterial-laden sludge due to low cell and cyanotoxin removal efficacy. Based on the reviewed literature, a decision framework is proposed to manage cyanobacteria and cyanotoxins and their associated sludge in DWTPs.
Collapse
Affiliation(s)
- Farhad Jalili
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Saber Moradinejad
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
- Correspondence:
| | - Arash Zamyadi
- Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Sarah Dorner
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Michèle Prévost
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| |
Collapse
|
5
|
Oxidation to Control Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants: Challenges at the Laboratory and Full-Scale Plants. WATER 2022. [DOI: 10.3390/w14040537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of oxidation on mitigation of cyanobacteria and cyanotoxins in drinking water treatment sludge was investigated at the laboratory and treatment plant scales. Two common oxidants, KMnO4 (5 and 10 mg/L) and H2O2 (10 and 20 mg/L) were applied under controlled steady-state conditions. Non-oxidized and oxidized sludge was left to stagnate in the dark for 7 to 38 days. Controlled laboratory trials show that KMnO4 and H2O2 decreased cell counts up to 62% and 77%, respectively. The maximum total MC level reduction achieved after oxidation was 41% and 98% using 20 mg/L H2O2 and 10 mg/L KMnO4, respectively. Stagnation caused cell growth up to 2.6-fold in 8 out of 22 oxidized samples. Microcystin (MC) producer orders as Chroococcales and Synechococcales were persistent while Nostocales was sensitive to combined oxidation and stagnation stresses. In parallel, two on-site shock oxidation treatments were performed in the DWTP’s sludge holding tank using 10 mg/L KMnO4. On-site shock oxidation decreased taxonomic cell counts by up to 43% within 24 h. Stagnation preceded by on-site shock oxidation could increase total cell counts by up to 55% as compared to oxidation alone. The increase of cell counts and mcyD gene copy numbers during stagnation revealed the impact of oxidation/stagnation on cyanobacterial cell growth. These findings show the limitations of sludge oxidation as a strategy to manage cyanobacteria and cyanotoxins in sludge and suggest that alternative approaches to prevent the accumulation and mitigation of cyanobacteria in sludge should be considered.
Collapse
|