1
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
2
|
Andersson C, Lin H, Liu C, Levy D, Mitchell GF, Larson MG, Vasan RS. Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002489. [DOI: 10.1161/circgen.118.002489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Heart failure (HF) may arise from alterations in metabolic, structural, and signaling pathways, but its genetic architecture is incompletely understood. To elucidate potential genetic contributors to cardiac remodeling and HF, we integrated genome-wide single-nucleotide polymorphisms, gene expression, and DNA methylation using a transomics analytical approach.
Methods:
We used robust rank aggregation (where the position of a certain gene in a rank order list [based on statistical significance level] is tested against a randomly shuffled rank order list) to derive an integrative transomic score for each annotated gene associated with a HF trait.
Results:
We evaluated ≤8372 FHS (Framingham Heart Study) participants (54% women; mean age, 55±17 years). Of these, 62 (0.7%) and 35 (0.4%) had prevalent HF with reduced ejection fraction and HF with preserved left ventricular ejection fraction, respectively. During a mean follow-up of 8.5 years (minimum–maximum, 0.005–18.6 years), 223 (2.7%) and 234 (2.8%) individuals developed incident HF with reduced ejection fraction and HF with reduced ejection fraction, respectively. Top genes included
MMP20
and
MTSS1
(promotes actin assembly at intercellular junctions) for left ventricular systolic function;
ITGA9
(receptor for
VCAM1
[vascular cell protein 1]) and
C5
for left ventricular remodeling;
NUP210
(expressed during myogenic differentiation) and
ANK1
(cytoskeletal protein) for diastolic function;
TSPAN16
and
RAB11FIP3
(involved in regulation of actin cytoskeleton) for prevalent HF with reduced ejection fraction;
ANKRD13D
and
TRIM69
for incident HF with reduced ejection fraction;
HPCAL1
and
PTTG1IP
for prevalent HF with reduced ejection fraction; and
ZNF146
(close to the
COX7A1
enzyme) and
ZFP3
(close to
SLC52A1
—the riboflavin transporter) for incident HF with reduced ejection fraction. We tested the HF-related top single-nucleotide polymorphisms in the UK biobank, where
rs77059055
in
TPM1
(minor allele frequency, 0.023; odds ratio, 0.83;
P
=0.002) remained statistically significant upon Bonferroni correction.
Conclusions:
Our integrative transomics approach offers insights into potential molecular and genetic contributors to HF and its precursors. Although several of our candidate genes have been implicated in HF in animal models, independent replication is warranted.
Collapse
Affiliation(s)
- Charlotte Andersson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark (C.A.)
| | - Honghuang Lin
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Chunyu Liu
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Daniel Levy
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (D.L.)
| | | | - Martin G. Larson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Ramachandran S. Vasan
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine (R.S.V.), Boston University School of Medicine, MA
- Department of Epidemiology (R.S.V.), Boston University School of Public Health, MA
| |
Collapse
|
3
|
Sato K, Ahsan MT, Ote M, Koganezawa M, Yamamoto D. Calmodulin-binding transcription factor shapes the male courtship song in Drosophila. PLoS Genet 2019; 15:e1008309. [PMID: 31344027 PMCID: PMC6690551 DOI: 10.1371/journal.pgen.1008309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/12/2019] [Accepted: 07/12/2019] [Indexed: 11/18/2022] Open
Abstract
Males of the Drosophila melanogaster mutant croaker (cro) generate a polycyclic pulse song dissimilar to the monocyclic songs typical of wild-type males during courtship. However, cro has not been molecularly mapped to any gene in the genome. We demonstrate that cro is a mutation in the gene encoding the Calmodulin-binding transcription factor (Camta) by genetic complementation tests with chromosomal deficiencies, molecular cloning of genomic fragments that flank the cro-mutagenic P-insertion, and phenotypic rescue of the cro mutant phenotype by Camta+-encoding cDNA as well as a BAC clone containing the gene for Camta. We further show that knockdown of the Camta-encoding gene phenocopies cro mutant songs when targeted to a subset of fruitless-positive neurons that include the mcALa and AL1 clusters in the brain. cro-GAL4 and an anti-Camta antibody labeled a large number of brain neurons including mcALa. We conclude that the Camta-encoding gene represents the cro locus, which has been implicated in a species-specific difference in courtship songs between D. sechellia and simulans. Selecting a suitable mate is a prerequisite for successful breeding in organisms. Indeed, the animals instinctively distinguish a conspecific partner from individuals of other species, yet the mechanism underlying such species-recognition remains largely unknown. In choosing a conspecific male as a mate, fruit fly females rely on a male-derived auditory signal, love song, which is generated by a series of unilateral wing vibration by the male. We study how the males produce love song that is unique to the species. We particularly focus on croaker (cro) mutants, whose males generate distorted love song. Our molecular analysis reveals that the cro mutation inhibits expression of the gene encoding a protein called Calmodulin-binding transcription factor (Camta) and that an introduction of the Camta-encoding DNA into the genome of cro mutants allows the mutant male to sing a normal song. Therefore, the Camta protein is an essential component for love song generation by males. We further show that knockdown of Camta only in tens of specific neurons in the brain is sufficient for inducing the cro mutant phenotype. This study paves the way for unraveling the mechanistic basis for female-male communications in conspecific mating.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Md. Tanveer Ahsan
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Manabu Ote
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masayuki Koganezawa
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- * E-mail:
| |
Collapse
|
4
|
Monies D, Abou Al-Shaar H, Goljan EA, Al-Younes B, Al-Breacan MMA, Al-Saif MM, Wakil SM, Meyer BF, Khabar KSA, Bohlega S. Identification of a novel genetic locus underlying tremor and dystonia. Hum Genomics 2017; 11:25. [PMID: 29110692 PMCID: PMC5674688 DOI: 10.1186/s40246-017-0123-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five affected individuals with syndromic tremulous dystonia, spasticity, and white matter disease from a consanguineous extended family covering a period of over 24 years are presented. A positional cloning approach utilizing genome-wide linkage, homozygozity mapping and whole exome sequencing was used for genetic characterization. The impact of a calmodulin-binding transcription activator 2, (CAMTA2) isoform 2, hypomorphic mutation on mRNA and protein abundance was studied using fluorescent reporter expression cassettes. Human brain sub-region cDNA libraries were used to study the expression pattern of CAMTA2 transcript variants. RESULTS Linkage analysis and homozygozity mapping localized the disease allele to a 2.1 Mb interval on chromosome 17 with a LOD score of 4.58. Whole exome sequencing identified a G>A change in the transcript variant 2 5'UTR of CAMTA2 that was only 6 bases upstream of the translation start site (c.-6G > A) (NM_001171166.1) and segregated with disease in an autosomal recessive manner. Transfection of wild type and mutant 5'UTR-linked fluorescent reporters showed no impact upon mRNA levels but a significant reduction in the protein fluorescent activity implying translation inhibition. CONCLUSIONS Mutation of CAMTA2 resulting in post-transcriptional inhibition of its own gene activity likely underlies a novel syndromic tremulous dystonia.
Collapse
Affiliation(s)
- Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| | - Hussam Abou Al-Shaar
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ewa A Goljan
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Maher Mohammed Al-Saif
- Biomolecular Medicine, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Biomolecular Medicine, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saeed Bohlega
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
5
|
Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie 2015; 113:1-9. [DOI: 10.1016/j.biochi.2015.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/11/2015] [Indexed: 01/04/2023]
|
6
|
Yang T, Du L, Poovaiah BW. Viewpoint: Concept of redesigning proteins by manipulating calcium/calmodulin-binding domains to engineer plants with altered traits. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:343-352. [PMID: 32689361 DOI: 10.1071/fp06293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/05/2007] [Indexed: 06/11/2023]
Abstract
The importance of calcium and calcium-binding proteins such as calmodulin in plant growth and development as well as plant response to environmental stimuli has been recognised for some time. However, it is only recently that the underlying mechanisms have begun to be unravelled. A variety of intracellular calcium signatures have been observed in response to various stimuli. However, how these changes induce downstream actions and how one can manipulate these events to alter plant response is an area of major interest. Here we discuss the recent advances on three intriguing calcium/calmodulin-regulated proteins: a calcium/calmodulin-regulated metabolic enzyme (DWF1); a chimeric calcium/calmodulin-dependent protein kinase (CCaMK); and a family of calcium/calmodulin-regulated transcription factors (AtSRs or CAMTAs). These proteins play critical roles in plant growth, plant : microbe interactions and plant response to multiple environmental signals. The identification and manipulation of calcium-binding and calmodulin-binding sites in these proteins have provided direct evidence for the role of calcium-binding and calmodulin-binding to the proteins, as well as providing new ways to rebuild the proteins and engineer plants to obtain desired traits.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Liqun Du
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|