1
|
Zardi P, Righino B, Pirolli D, Gramanzini M, Semeraro A, Galano-Frutos JJ, Königs A, Ðorđević L, Maggini M, Buttarelli M, Cappoli N, Romano V, De Donato M, Gallo D, Scambia G, De Rosa MC. Design and synthesis of pyridopyrimidines targeting NEK6 kinase. Arch Biochem Biophys 2025; 768:110391. [PMID: 40090442 DOI: 10.1016/j.abb.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
We designed a series of pyrido[2,3-d]pyrimidine derivatives based on the structure of the NEK6 kinase inhibitor, compound 21 (2-amino-5-phenyl-5,11-dihydro-3H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-4,6-dione), which share the same heterocyclic core. Chemical modifications, aimed at altering the molecular planarity of 21 to enhance water solubility, were guided by receptor-based ligand design and further supported by molecular docking, molecular dynamics simulations, and free energy perturbation calculations. Our results indicate that disrupting the planarity of 21 increases aqueous solubility - nearly doubling it in two cases- while reducing lipophilicity. Among the compounds tested, three showed both improved solubility and NEK6 inhibitory activity exceeding 50 % in single-dose assay.
Collapse
Affiliation(s)
- Paolo Zardi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Benedetta Righino
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Davide Pirolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Matteo Gramanzini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Alessandro Semeraro
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Juan José Galano-Frutos
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Anna Königs
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luka Ðorđević
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Michele Maggini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy; Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE)-CNR, Padova, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marianna Buttarelli
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Natalia Cappoli
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Viviana Romano
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Marta De Donato
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Daniela Gallo
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Maria Cristina De Rosa
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy.
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Bhanja KK, Patra N. Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach. J Phys Chem B 2025; 129:3610-3629. [PMID: 40053865 DOI: 10.1021/acs.jpcb.4c07651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inhibitors faces challenges like resistance and stopping over phosphorylation. Notably AIs have been introduced to overcome this resistance and increase inhibitory potency that binds to pockets other than the ATP-binding site (orthosteric site). Recently, fourth-generation AIs, EAI045, have been discovered to potently and selectively inhibit various EGFR mutations but limited antiproliferative effects in the absence of the antibody cetuximab. The purpose of this work is to identify nontoxic, potent small AIs through various screening pipelines and explore their molecular mechanism. In the discovery of AIs, structural similarity search, high-throughput virtual screening, and machine learning-guided QSAR modeling, several candidates were identified. Machine learning was employed to guide the QSAR model based on 2D descriptors and DFT-derived quantum chemical descriptors followed by a PCA reduction technique, which enabled the prediction of the biological activity (IC50) of screened drugs against various EGFR mutations such as T790M/L858R/C797S and T790M/L858R. In addition, multinanosecond (ns) and microsecond (μs) classical molecular dynamics (MD) simulations run on protein-ligand binding complex to check the stability of binding dynamics for T790M/L858R/C797S and T790M/L858R mutations with lower IC50 and higher docking score compounds. The molecular mechanics generalized Boltzmann surface area (MM/GBSA) calculation revealed that the five hit allosteric molecules for T790M/C797S/L858R and two for T790M/L858R mutations had a high binding affinity. The results were corroborated further by MM/GBSA employing the normal-mode analysis entropy method to perform additional screening. Furthermore, the compounds' efficacy was confirmed using path-dependent ligand unbinding free energy techniques such as Jarzynski averaged free energy profiles obtained from adaptive steered MD, relative residence time, and umbrella sampling simulations, which were compared to a reference inhibitor. However, path-independent alchemical approaches like streamlined alchemical free energy perturbation and binding free energy estimator 2 (BFEE2) were employed to validate the results and identify potent compounds. These findings pave the way to identification of novel potential fourth-generation AIs, which require further experimental validation.
Collapse
Affiliation(s)
- Kousik K Bhanja
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Dhanbad 826004, India
| |
Collapse
|
4
|
Gopalakrishnan AP, Shivamurthy PB, Ahmed M, Ummar S, Ramesh P, Thomas SD, Mahin A, Nisar M, Soman S, Subbannayya Y, Raju R. Positional distribution and conservation of major phosphorylated sites in the human kinome. Front Mol Biosci 2025; 12:1557835. [PMID: 40270594 PMCID: PMC12015135 DOI: 10.3389/fmolb.2025.1557835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
The human protein kinome is a group of over 500 therapeutically relevant kinases. Exemplified by over 10,000 phosphorylated sites reported in global phosphoproteomes, kinases are also highly regulated by phosphorylation. Currently, 1008 phosphorylated sites in 273 kinases are associated with their regulation of activation/inhibition, and a few in 30 kinases are associated with altered activity. Phosphorylated sites in 196 kinases are related to other molecular functions such as localization and protein interactions. Over 8,000 phosphorylated sites, including all those in 517 kinases are unassigned to any functions. This imposes a significant bias and challenge for the effective analysis of global phosphoproteomics datasets. Hence, we derived a set of stably and frequently detected phosphorylated sites (representative phosphorylated sites) across diverse experimental conditions annotated in the PhosphoSitePlus database and presumed them to be relevant to the human kinase regulatory network. Analysis of these representative phosphorylated sites led to the classification of 449 kinases into four distinct categories (kinases with phosphorylated sites apportioned (PaKD) and enigmatic (PeKD), and those with predominantly within kinase domain (PiKD) and outside kinase domain (PoKD)). Knowledge-based functional analysis and sequence conservation across the family/subfamily identified phosphorylated sites unique to specific kinases that could contribute to their unique functions. This classification of representative kinase phosphorylated sites enhance our understanding of prioritized validation and provides a novel framework for targeted phosphorylated site enrichment approaches. Phosphorylated sites in kinases associated with dysregulation in diseases were frequently located outside the kinase domain, and suggesting their regulatory roles and opportunities for phosphorylated site-directed therapeutic approaches.
Collapse
Affiliation(s)
- Athira Perunelly Gopalakrishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samseera Ummar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Poornima Ramesh
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Althaf Mahin
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
5
|
Hamidi M, Nagarajan SN, Ravikumar V, Gueguen-Chaignon V, Laguri C, Freton C, Mijakovic I, Simorre JP, Ravaud S, Grangeasse C. The juxtamembrane domain of StkP is phosphorylated and influences cell division in Streptococcus pneumoniae. mBio 2025:e0379924. [PMID: 40197031 DOI: 10.1128/mbio.03799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Eukaryotic-like membrane Ser/Thr protein kinases play a pivotal role in different aspects of bacterial physiology. In contrast to the diversity of their extracellular domains, their cytoplasmic catalytic domains are highly conserved. However, the function of a long juxtamembrane domain (JMD), which connects the catalytic domain to the transmembrane helix, remains elusive. In this study, we investigated the function of the JMD of the Ser/Thr protein kinase StkP in the cell division of Streptococcus pneumoniae. We observed that the deletion of the JMD affected the ability of StkP to phosphorylate some of its endogenous substrates, thereby resulting in significant cell morphogenesis defects. Furthermore, multiple threonine residues were identified as being phosphorylated in the JMD. To investigate the functional significance of these phosphorylation sites, we conducted an integrative analysis, combining structural biology, proteomics, and bacterial cell imaging. Our results revealed that the phosphorylation of the JMD did not perturb the phosphorylation of StkP substrates. However, we observed that it modulated the timing of StkP localization to the division septum and the dynamics of cell constriction. We further demonstrated that phosphorylation of the JMD facilitated the recruitment of several cell division proteins, suggesting that it is required to assemble the division machinery at the division septum. In conclusion, this study demonstrates that the function of the JMD of StkP is modulated by phosphorylation and is critical for the cell division of S. pneumoniae. These observations may serve as a model for understanding the regulatory function of other bacterial Ser/Thr protein kinases.IMPORTANCEHow bacterial serine/threonine protein kinases are activated remains highly debated. In particular, models rely on the observations made with their eukaryotic counterparts, and only a few studies have investigated the molecular activation mechanism of bacterial serine/threonine protein kinases. This is particularly the case with regard to the juxtamembrane domain (JMD), which is proposed to contribute to kinase activation in numerous eukaryotic kinases. This study demonstrates that the juxtamembrane domain is likely not essential for the activation of the serine/threonine protein kinase StkP of S. pneumoniae. Rather, our findings reveal that it is required for cell division, where its phosphorylation affects the assembly of the division machinery at the division septum. These observations allow us to assign a function to the JMD in StkP-mediated regulation of pneumococcal cell division, thereby providing a new avenue for understanding the contribution of membrane serine/threonine protein kinases in the physiology of other bacteria.
Collapse
Affiliation(s)
- Mélisse Hamidi
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Vaishnavi Ravikumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cédric Laguri
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| |
Collapse
|
6
|
Alam R, Reva A, Edwards DG, Lege BM, Munoz-Arcos LS, Reduzzi C, Singh S, Hao X, Wu YH, Tian Z, Natalee LM, Damle G, Demircioglu D, Wang Y, Wu L, Molteni E, Hasson D, Lim B, Gugala Z, Chipuk JE, Lang JE, Sparano JA, Cheng C, Cristofanilli M, Xiao H, Zhang XHF, Bado IL. Bone-Induced HER2 Promotes Secondary Metastasis in HR+/HER2- Breast Cancer. Cancer Discov 2025; 15:818-837. [PMID: 39835789 PMCID: PMC11964846 DOI: 10.1158/2159-8290.cd-23-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE Given the urgent need for alternative strategies to block metastasis progression, we demonstrate that blocking HER2-mediated secondary metastasis improves clinical outcome and establish HER2 as a biomarker for bone metastasis in patients with initial HR+/HER2- breast cancer, which represents ∼70% of all cases.
Collapse
Affiliation(s)
- Rahat Alam
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Anna Reva
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - David G. Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bree M. Lege
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura S. Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Swarnima Singh
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Laura M. Natalee
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gargi Damle
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elisabetta Molteni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dan Hasson
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Bora Lim
- Department of Breast Medical Oncology, Division of Cancer Medicine, MD Anderson, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Jerry E. Chipuk
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Julie E. Lang
- Department of Cancer Biology, Division of Breast Cancer, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Joseph A. Sparano
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor L. Bado
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
- Lead contact
| |
Collapse
|
7
|
Topalan E, Büyükgüngör A, Çiğdem M, Güra S, Sever B, Otsuka M, Fujita M, Demirci H, Ciftci H. A Structural Insight Into Two Important ErbB Receptors (EGFR and HER2) and Their Relevance to Non-Small Cell Lung Cancer. Arch Pharm (Weinheim) 2025; 358:e2400992. [PMID: 40194950 PMCID: PMC11975551 DOI: 10.1002/ardp.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The epidermal growth factor receptor (EGFR) family, comprising receptor tyrosine kinases (RTK) such as EGFR and HER2, plays a critical role in various signaling pathways related to cell proliferation, differentiation, and growth. EGFR overactivation due to aberrant signaling can lead to various cancers, including non-small cell lung cancer (NSCLC). To develop treatment for EGFR-related NSCLC, several tyrosine kinase inhibitors (TKIs) were designed: gefitinib, erlotinib, as first-generation; neratinib, dacomitinib as second-generation; osimertinib, lazertinib as third-generation, as examples. However, due to the acquired resistance by the mutations such as EGFRT790M and EGFRC797S together with the exon 20 insertion mutations, these drugs do not provide promising results for NSCLC patients. The development of fourth-generation inhibitors like EAI045 and further innovative drugs to overcome this resistance problem is a must to cure EGFR-related NSCLC. Among these, pyrazoline-thiazole scaffolds are found effective as EGFR-HER2 inhibitors against NSCLC, making them promising drug candidates. Although structures obtained so far for the EGFR family provide meaningful insights into the mechanisms, the quality and the quantity of the EGFR family structures are insufficient to elucidate the complete structures and functions to overcome NSCLC. This review evaluates the structures of EGFR-HER2 and investigates their relation to NSCLC.
Collapse
Affiliation(s)
- Edanur Topalan
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Ahmet Büyükgüngör
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTürkiye
| | - Melih Çiğdem
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Sinan Güra
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Graduate School of Biology & HealthUniversité Paris SaclayOrsayFrance
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskisehirTürkiye
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hasan Demirci
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
- Department of Molecular Biology and GeneticsMehmet Akif Ersoy UniversityBurdurTürkiye
- Department of Bioengineering SciencesIzmir Katip Celebi UniversityIzmirTürkiye
| |
Collapse
|
8
|
Sharrocks KL, Swaih AM, Hanyaloglu AC. Single-molecule localization microscopy as a tool to quantify di/oligomerization of receptor tyrosine kinases and G protein-coupled receptors. Mol Pharmacol 2025; 107:100033. [PMID: 40228395 DOI: 10.1016/j.molpha.2025.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Dimerization and oligomerization of membrane receptors, including G protein-coupled receptors and receptor tyrosine kinases, are fundamental for regulating cell signaling and diversifying downstream responses to mediate a range of physiological processes. Receptor di/oligomers play roles in diverse facets of receptor function. Changes in receptor di/oligomers have been implicated in a range of diseases; therefore, better understanding of the specific composition and interactions between receptors in complexes is essential, especially for the development of di/oligomer-specific drugs. Previously, different optical microscopy approaches and proximity-based biophysical assays have been used to demonstrate di/oligomerization of membrane receptors. However, in recent years, single-molecule super-resolution microscopy techniques have allowed researchers to quantify and uncover the precise dynamics and stoichiometry of specific receptor complexes. This allows the organization of membrane protein receptors to be mapped across the plasma membrane to explore the effects of factors such as ligands, effectors, membrane environment, and therapeutic agents. Quantification of receptor complexes is required to better understand the intricate balance of distinct receptor complexes in cells. In this brief review, we provide an overview of single-molecule approaches for the quantification of receptor di/oligomerization. We will discuss the techniques commonly employed to study membrane receptor di/oligomerization and their relative advantages and limitations. SIGNIFICANCE STATEMENT: Receptor di/oligomerization plays an important role in their function. For some receptors, di/oligomerization is essential for functional signaling, whereas for others, it acts as a mechanism to achieve signaling pleiotropy. Aberrant receptor di/oligomerization has been implicated in a wide range of diseases. Single-molecule super-resolution microscopy techniques provide convincing methods to precisely quantify receptor complexes at the plasma membrane. Understanding receptor complex organization in disease models can also influence the targeting of specific monomeric or oligomeric complexes in therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Aylin C Hanyaloglu
- The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
9
|
Mo SY, Li Y, Fan YY, Zhang YJ, Liu JW, Song XT, Xu XX, Cao Y, Jin JQ, Xie QF. Genistein reverses the exacerbating effect of 17β-estradiol on experimental occlusal interference induced chronic masseter hyperalgesia through suppressing ERK1/2 signal pathway in spinal trigeminal nucleus of ovariectomized rats. Eur J Pharmacol 2025; 998:177544. [PMID: 40139418 DOI: 10.1016/j.ejphar.2025.177544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Temporomandibular disorder (TMD) pain is more prevalent in females than in males, with high estrogen levels potentially being a risk factor. Research indicates that 17β-estradiol (E2) exacerbates experimental occlusal interference (EOI)-induced orofacial hyperalgesia, which can be reversed by genistein. This study aimed to explore the central mechanisms within the spinal trigeminal nucleus (Sp5) related to the pain-exacerbating effect of E2 and the antiestrogenic properties of genistein in a model of EOI-induced chronic masseter pain. METHODS Female rats underwent ovariectomy (OVX), followed by pretreatment with genistein or genistin (a control drug for genistein that does not inhibit protein tyrosine kinases (PTKs)), E2 replacement, and EOI application. The head withdrawal thresholds (HWTs) of the bilateral masseters were measured to evaluate pain sensitivity. Expression levels of p-ERK and two PTKs (Yes-associated protein, YAP; Src kinase, Src) in bilateral Sp5 were assessed through immunofluorescent staining and/or Western blotting. The ERK inhibitor PD98059 or vehicle was administered via intrathecal injection (i.t.) to inhibit the ERK1/2 signaling pathway. RESULTS E2 intensified EOI-induced masseter mechanical hyperalgesia in OVX rats, and upregulated the phosphorylation of ERK1/2 in bilateral Sp5. Blocking phosphorylation of ERK1/2 in Sp5 reversed the exacerbating effect of E2. Genistein partially reversed the masseter hyperalgesia induced by E2 combined with EOI, possibly through the inhibition of PTKs and p-ERK1/2 upregulation in bilateral Sp5. CONCLUSION Genistein alleviates the pain-exacerbating effect of E2 on EOI-induced chronic mechanical hyperalgesia by inhibiting YAP and Src tyrosine kinases as well as the downstream ERK1/2 signaling pathway in Sp5.
Collapse
Affiliation(s)
- Si-Yi Mo
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Yuan Li
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Ying-Ying Fan
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Yao-Jun Zhang
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Jing-Wen Liu
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Xu-Tong Song
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Xiao-Xiang Xu
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Ye Cao
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| | - Jian-Qiu Jin
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Qiu-Fei Xie
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Giacoletto CJ, Valente LJ, Brown L, Patterson S, Gokhale R, Mockus SM, Grody WW, Deng HW, Rotter JI, Schiller MR. New Gain-of-Function Mutations Prioritize Mechanisms of HER2 Activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323043. [PMID: 40093211 PMCID: PMC11908269 DOI: 10.1101/2025.03.03.25323043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ERBB2 (HER2) is a well-studied oncogene with several driver mutations apart from the well-known amplification defect in some breast cancers. We used the GigaAssay to test the functional effect of HER2 missense mutations on its receptor tyrosine kinase function. The GigaAssay is a modular high-throughput one-pot assay system for simultaneously measuring molecular function of thousands of genetic variants at very high accuracy. The activities of 5,886 mutations were classified, significantly more than mutants previously reported. These variants include 112 new in vitro, 10 known, and 9 new in vivo gain-of-function (GOF) mutations. Many of the GOFs spatially cluster in sequence and structure, supporting the activation mechanisms of heterodimerization with EGFR and release of kinase inhibition by the juxtamembrane domain. Retrospective analysis of patient outcomes from the Genomic Data Commons predicts increased survival with the newly identified HER2 GOF variants.
Collapse
Affiliation(s)
- Christopher J Giacoletto
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
| | - Liz J Valente
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
| | - Lancer Brown
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
| | - Sara Patterson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032
| | - Rewatee Gokhale
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032
| | | | | | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Department of Deming Department of Medicine, Tulane University, New Orleans, 70112 USA
| | - Jerome I Rotter
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Martin R Schiller
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
| |
Collapse
|
11
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
12
|
Wang Y, Zhang B, He C, Tian B, Liu S, Li J, Wang J, Yang S, Zhu B, Wang X, Chang Z, Cao C. Cross-Talk between NOK and EGFR: Juxtamembrane and Kinase domain interactions enhancing STAT3/5 signaling in breast cancer tumorigenesis. Transl Oncol 2025; 52:102276. [PMID: 39808846 PMCID: PMC11782862 DOI: 10.1016/j.tranon.2025.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis. Hence, investigating the diverse partnership profiles of EGFR is crucial for elucidating the mechanisms underlying EGFR-mediated actions in tumors, which in turn can guide the development of targeted therapeutic strategies. Here we report that NOK (also known as STYK1), a novel tyrosine kinase cross-talks with EGFR to promote tumorigenesis and metastasis of breast cancer cells. We found that NOK directly interacted with EGFR and formed a heterodimer complex in a manner of cross interaction via their juxtamembrane (JM) domains and kinase domains. Depletion of NOK impaired, but over-expression of NOK increased, the phosphorylation of EGFR. NOK enhanced EGF-induced phosphorylation of STAT3 and STAT5 via its juxtamembrane (JM) domain in promoting the proliferation and migration of breast cancer cells. Overexpression of NOK and EGFR synergistically induced the tumorigenesis of NIH-3T3 normal cells. We demonstrated that co-expression of NOK and EGFR correlated with tumor malignant stages in breast cancer patients. Our finding introduces a new cross interaction manner of EGFR-NOK via juxtamembrane (JM) domains and kinase domains, uncovers a mechanism by which NOK coordinates EGFR to enhance EGF-STAT3/5 signaling during tumorigenesis and metastasis, and proposes a potential strategy for targeting NOK-EGFR in breast cancer treatment.
Collapse
Affiliation(s)
- Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Bingdong Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chunhua He
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, Zhejiang, 314000, China
| | - Bo Tian
- Department of Surgical, Hospital of Northwestern Polytechnical University, Xian, 710072, Shaanxi, China
| | - Sihan Liu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianghua Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jiayu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shigao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, Zhejiang, 314000, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
13
|
Rajeeve AD, Yamuna R, Namboori PKK. Elucidating the potential of EGFR mutated NSCLC and identifying its multitargeted inhibitors. Sci Rep 2025; 15:3649. [PMID: 39880831 PMCID: PMC11779874 DOI: 10.1038/s41598-024-83868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related fatalities globally, accounting for the highest mortality rate among both men and women. Mutations in the epidermal growth factor receptor (EGFR) gene are frequently found in non-small cell lung cancer (NSCLC). Since curcumin and CB[2]UN support various medicinal applications in drug delivery and design, we investigated the effect of curcumin and CB[2]UN-based drugs in controlling EGFR-mutant NSCLC through a dodecagonal computational approach. Molecular docking studies revealed that the ligands curcumin (-6.9 kcal/mol) and CB[2]UN (-8.1 kcal/mol) bound more strongly to the EGFR-mutant NSCLC proteins with 2ITX and 2ITV, respectively. Molecular dynamics simulation (50 ns) investigation of protein-ligand complexes using RMSD, RMSF, Rg, and SASA indicated that curcumin and CB[2]UN with EGFR-mutant proteins are kinetically stable. In addition, MMPBSA/MMGBSA analysis confirmed the thermodynamic stability of each curcumin and CB[2]UN protein-ligand complex. Finally, KDeep absolute binding affinity calculations show energies of -6.13 kcal/mol and - 5.26 kcal/mol for 2ITX-CUR and 2ITV-CB[2]UN protein-ligand complexes, respectively. Thus, our dodecagonal strategy reveals that 2ITX-CUR and 2ITV-CB[2]UN are more likely to form protein-ligand complexes with more significant binding affinities and excellent stability throughout the 50 ns simulation time.
Collapse
Affiliation(s)
- Anakha D Rajeeve
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Ramasamy Yamuna
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| | - P K Krishnan Namboori
- Amrita School of Artificial Intelligences, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Computational Chemistry Group (CCG), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Biopharma Solutions, Coimbatore, 641105, India.
| |
Collapse
|
14
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Zhang J, Tsutsui Y, Li H, Li T, Wang Y, Laraki S, Alarcon-Frias S, Stayrook SE, Klein DE. Structural basis for the interaction between the Drosophila RTK Sevenless (dROS1) and the GPCR BOSS. Nat Commun 2025; 16:808. [PMID: 39827240 PMCID: PMC11743138 DOI: 10.1038/s41467-025-55943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless). However, the physical basis for how dROS1 interacts with BOSS has long remained unknown. Here we provide a cryo-EM structure of dROS1's extracellular region, which mediates ligand binding. We show that the extracellular region of dROS1 adopts a folded-over conformation stabilized by an N-terminal domain comprised of two disulfide stapled helical hairpins. We further narrowed down the interacting binding epitopes on both dROS1 and BOSS using hydrogen-deuterium exchange mass spectrometry (HDX-MS). This includes beta-strands in dROS1's third Fibronectin type III (FNIII) domain and a C-terminal peptide in BOSS' ECR. Our mutagenesis studies, coupled with AlphaFold complex predictions, support a binding interaction mediated by a hydrophobic interaction and beta-strand augmentation between these regions. Our findings provide a fundamental understanding of the regulatory function of dROS1 and further provide mechanistic insight into the human ortholog and oncogene ROS1.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Hengyi Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Tongqing Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Yueyue Wang
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Salma Laraki
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Sofia Alarcon-Frias
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Daryl E Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
16
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
17
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
18
|
Wittlinger F, Chitnis SP, Pham CD, Damghani T, Patel KB, Möllers M, Schaeffner IK, Abidakun OA, Deng MQ, Ogboo BC, Rasch A, Beyett TS, Buckley B, Feru F, Shaurova T, Knappe C, Eck MJ, Hershberger PA, Scott DA, Brandt AL, Laufer SA, Heppner DE. Tilting the Scales toward EGFR Mutant Selectivity: Expanding the Scope of Bivalent "Type V" Kinase Inhibitors. J Med Chem 2024; 67:21438-21469. [PMID: 39626019 DOI: 10.1021/acs.jmedchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure-activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I1/2 inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as "Type V" bivalent inhibitors.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kishan B Patel
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mareike Möllers
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omobolanle A Abidakun
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew Q Deng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Frederic Feru
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Asher L Brandt
- Department of Chemistry, University of Saint Joseph, West Hartford, Connecticut 06117 United States
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
19
|
Singh PK, Rybak JA, Schuck RJ, Sahoo AR, Buck M, Barrera FN, Smith AW. Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes. SCIENCE ADVANCES 2024; 10:eadl0649. [PMID: 39630914 PMCID: PMC11616708 DOI: 10.1126/sciadv.adl0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here, we use a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated heteromultimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol 4,5-bisphosphate (PIP2). We found that higher PIP2 levels increased homomultimerization of both EGFR and EphA2, as well as heteromultimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP2 can have a substantial effect on the spatial organization of RTKs.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Jennifer A. Rybak
- Genome Sciences and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J. Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amita R. Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam W. Smith
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| |
Collapse
|
20
|
Dou D, Zhang X, Wang J, Wumaier G, Qiao Y, Xie L, Jiang W, Sha W, Li W, Mei W, Zhang C, He H, Wang C, Wu L, Diao Y, Zhu L, Zhao Z, Chen Z, Xu Y, Li S, Li H. Design, synthesis, and biological evaluation of diphenyl ether substituted quinazolin-4-amine derivatives as potent EGFR L858R/T790M/C797S inhibitors. Eur J Med Chem 2024; 279:116858. [PMID: 39278125 DOI: 10.1016/j.ejmech.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a validated target for non-small-cell lung cancer (NSCLC). However, the treatment for EGFR-C797S mutation induced by third-generation EGFR inhibitors remains a concern. Therefore, the development of the fourth-generation EGFR inhibitors to overcome the EGFR-C797S mutation has great potential for clinical treatment. In this article, we designed and synthesized a series of diphenyl ether substituted quinazolin-4-amine derivatives that simultaneously occupy the ATP binding pocket and the allosteric site of EGFR. Among the newly synthesized compounds, 9d displayed excellent kinase activity against EGFRL858R/T790M/C797S with an IC50 value of 0.005 μM, and exhibited anti-proliferation activity in BaF3-EGFRL858R/T790M/C797S cells with the IC50 value of 0.865 μM. Furthermore, 9d could suppress phosphorylation of EGFR and induce cell apoptosis and cycle arrest at G2 phase in a dose-dependent manner in BaF3-EGFRL858R/T790M/C797S cells. More importantly, 9d displayed significant antitumor effects in BaF3-EGFRL858R/T790M/C797S xenograft mouse model (30 mg/kg, TGI = 71.14 %). All the results indicated compound 9d might be a novel fourth-generation EGFR inhibitor for further development in overcoming the EGFR-C797S resistance mutation.
Collapse
Affiliation(s)
- Dou Dou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xingsen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunjin Qiao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lijuan Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenzhe Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Sha
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Huan He
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Caolin Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingkang Wu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
21
|
An X, Paoloni J, Oh Y, Spangler JB. Engineering growth factor ligands and receptors for therapeutic innovation. Trends Cancer 2024; 10:1131-1146. [PMID: 39389907 PMCID: PMC11631651 DOI: 10.1016/j.trecan.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
Growth factors signal through engagement and activation of their respective cell surface receptors to choreograph an array of cellular functions, including proliferation, growth, repair, migration, differentiation, and survival. Because of their vital role in determining cell fate and maintaining homeostasis, dysregulation of growth factor pathways leads to the development and/or progression of disease, particularly in the context of cancer. Exciting advances in protein engineering technologies have enabled innovative strategies to redesign naturally occurring growth factor ligands and receptors as targeted therapeutics. We review growth factor protein engineering efforts, including affinity modulation, molecular fusion, the design of decoy receptors, dual specificity constructs, and vaccines. Collectively, these approaches are catapulting next-generation drugs to treat cancer and a host of other conditions.
Collapse
Affiliation(s)
- Xinran An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Paoloni
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuseong Oh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
22
|
Hayashi SY, Pak S, Torlentino A, Rizzo RC, Miller WT. Mutations in Mig6 reduce inhibition of the epidermal growth factor receptor. FASEB J 2024; 38:e70194. [PMID: 39548957 PMCID: PMC11707679 DOI: 10.1096/fj.202401330r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Mitogen-inducible gene 6 (Mig6) is a cellular inhibitor of epidermal growth factor receptor (EGFR) that binds directly to the EGFR kinase domain and interferes with signaling. Reduced Mig6 expression is correlated with increased EGFR activity in multiple cancer models. Here, we investigated whether disease-associated point mutations could reduce the inhibitory potency of Mig6. We show that several cancer-associated mutations, and a mutation derived from Alzheimer's Disease patients, diminish the ability of Mig6 to bind and inhibit EGFR in vitro. In mammalian cells, the mutations decreased the Mig6-induced suppression of basal and EGF-stimulated autophosphorylation, MAP kinase phosphorylation, and cell migration. To probe the mechanisms by which the mutations could lead to reduced Mig6 inhibition, we constructed atomic-level computational models of Mig6 complexed with the EGFR catalytic domain, and performed molecular dynamics simulations for wild-type and mutant complexes.
Collapse
Affiliation(s)
- Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Steven Pak
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Antonio Torlentino
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
23
|
Zhang Y, Wang M, Shao G, Shang Q, Dong M, Qin X, Mi LZ. Multiple allostery in the regulation of PDGFR beta kinase activities. Acta Biochim Biophys Sin (Shanghai) 2024; 57:344-355. [PMID: 39623946 PMCID: PMC11986439 DOI: 10.3724/abbs.2024205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 04/04/2025] Open
Abstract
Platelet-derived growth factor receptor beta (PDGFRβ), a type III receptor tyrosine kinase (RTK) with a featured kinase insert, regulates important cellular functions. Dysregulation of PDGFRβ is associated with cardiovascular and fibrosis diseases. Thus, its kinase activity needs to be precisely regulated under physiological conditions. Early studies demonstrated that its kinase is autoinhibited by its juxtamembrane segment and activated by transphosphorylation. However, additional mechanisms are required for the comprehensive regulation of the receptor kinase. Herein, we provide evidence that dimerization of activated kinases, autoinhibition by the kinase insert, and dimerization of inactive kinase, all contribute to the regulation of the receptor kinase. Moreover, we find such multiple allosteric regulation is also conserved in other type III RTKs, including colony stimulating factor 1 receptor (CSF1R). Impaired allosteric regulation of CSF1R is associated with malfunctions of microglia and demyelination of neurons in hereditary diffuse leukoencephalopathy with spheroids (HDLS).
Collapse
Affiliation(s)
- Yanfeng Zhang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Meimei Wang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Guangcan Shao
- National Institute of Biological SciencesBeijing102206China
| | - Qingbin Shang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Mengqiu Dong
- National Institute of Biological SciencesBeijing102206China
| | - Xiaohong Qin
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Li-Zhi Mi
- School of Life SciencesTianjin UniversityTianjin300072China
| |
Collapse
|
24
|
Gonzalez-Magaldi M, Gullapalli A, Papoulas O, Liu C, Leung AYH, Guo L, Brilot A, Marcotte EM, Ke Z, Leahy DJ. Structure and organization of full-length Epidermal Growth Factor Receptor in extracellular vesicles by cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625301. [PMID: 39651119 PMCID: PMC11623583 DOI: 10.1101/2024.11.25.625301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density. EGFR extracellular regions do not form regular arrays, suggesting that clustering is mediated by the intracellular region. Subtomogram averaging of the EGFR extracellular region (ECR) yielded a 15 Å map into which the crystal structure of the ligand-bound EGFR ECR dimer fits well. These findings refine our understanding of EGFR activation, clustering, and signaling, and they establish EVs as a versatile platform for structural and functional characterization of human membrane proteins in a native-like environment. Significance Statement Atomic or near-atomic resolution structural studies of proteins embedded in cell membranes have proven challenging. We show that transporting integral membrane proteins to cell-derived extracellular vesicles enables structural and functional studies of human membrane proteins in a native membrane environment. We have used this approach to visualize an active form of full-length Epidermal Growth Factor Receptor (EGFR) and show that it forms clusters in the membrane and projects its cytoplasmic signaling domains ∼3 nm away from the membrane surface. EGFR is essential for normal development, but abnormal EGFR activity is associated with several human cancers and is the target of many anticancer therapies. Our studies refine current models of how ligand binding to EGFR transmits signals across cell membranes.
Collapse
|
25
|
Kozlova I, Sytnyk V. Cell Adhesion Molecules as Modulators of the Epidermal Growth Factor Receptor. Cells 2024; 13:1919. [PMID: 39594667 PMCID: PMC11592701 DOI: 10.3390/cells13221919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins mediating interactions of cells with other cells and the extracellular matrix. By mediating the adhesion and modulating activity of other plasma membrane proteins, CAMs are involved in regulating a multitude of cellular processes, including growth, proliferation, migration, and survival of cells. In this review, we present evidence showing that various CAMs interact with the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase inducing pro-proliferative and anti-apoptotic intracellular signaling in response to binding to several soluble ligands, including the epidermal growth factor. We discuss that CAMs are involved in regulating EGFR signaling by either potentiating or inhibiting the soluble ligand-dependent activation of EGFR. In addition, CAMs induce soluble ligand-independent forms of EGFR activity and regulate the levels of EGFR and its ligand-induced degradation. The CAM-dependent modulation of EGFR activity plays a key role in regulating the growth, proliferation, and survival of cells. Future research is needed to determine whether these processes can be targeted in both normal and cancerous cells by regulating interactions of EGFR with various CAMs.
Collapse
Affiliation(s)
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
26
|
Kim Y, Oh HC, Lee S, Kim HH. Saturation profiling of drug-resistant genetic variants using prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02465-z. [PMID: 39533107 DOI: 10.1038/s41587-024-02465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Methods to characterize the functional effects of genetic variants of uncertain significance (VUSs) have been limited by incomplete coverage of the mutational space. In clinical oncology, drug resistance arising from VUSs can prevent optimal treatment. Here we introduce PEER-seq, a high-throughput method based on prime editing that can evaluate the functional effects of single-nucleotide variants (SNVs). PEER-seq introduces both intended SNVs and synonymous marker mutations using prime editing and deep sequences the endogenous target regions to identify the introduced SNVs. We generate and functionally evaluate 2,476 SNVs in the epidermal growth factor receptor gene (EGFR), including 99% of all possible variants in the canonical tyrosine kinase domain. We determined resistance profiles of 95% of all possible EGFR protein variants encoded in the whole tyrosine kinase domain against the common tyrosine kinase inhibitors afatinib, osimertinib and osimertinib in the presence of the co-occurring substitution T790M, in PC-9 cells. Our study has the potential to substantially improve the precision of therapeutic choices in clinical settings.
Collapse
Affiliation(s)
- Younggwang Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong-Cheol Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital, Department of Surgery, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Won-Sang Lee Institute for Hearing Loss, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Abe M, Yanagawa M, Hiroshima M, Kobayashi T, Sako Y. Bilateral regulation of EGFR activity and local PI(4,5)P 2 dynamics in mammalian cells observed with superresolution microscopy. eLife 2024; 13:e101652. [PMID: 39513999 PMCID: PMC11548882 DOI: 10.7554/elife.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku UniversitySendaiJapan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de PharmacieIllkirchFrance
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
28
|
Zwierenga F, Zhang L, Melcr J, Schuuring E, van Veggel BAMH, de Langen AJ, Groen HJM, Groves MR, van der Wekken AJ. The prediction of treatment outcome in NSCLC patients harboring an EGFR exon 20 mutation using molecular modeling. Lung Cancer 2024; 197:107973. [PMID: 39374568 DOI: 10.1016/j.lungcan.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION The structural effect of uncommon heterogenous in-frame deletion and/or insertion mutations within exon 20 (EGFRex20+) in relation to therapy response is poorly understood. This study aims to elucidate the structural alterations caused by EGFRex20+ mutations and correlate these changes with patient responses. MATERIAL AND METHOD We selected EGFRex20+ mutations from advanced NSCLC patients in the Position20 and AFACET studies for computational analysis. Homology models representing both inactive and active conformations of these mutations were generated using the Swiss-Model server. Molecular docking studies with EGFR-TKIs was conducted using smina, followed by Molecular Dynamic (MD) simulations performed with GROMACS. These computational findings were compared with clinical outcomes to evaluate their potential in predicting patient response. RESULTS Our docking studies of 29 EGFRex20+ mutations revealed that the binding energies of afatinib, osimertinib, zipalertinib, and sunvozertinib, compared to the wild type, do not significantly impact either TKI's efficacy. MD simulations for eight EGFRex20+ mutations (A763_Y764insFQEA, A767_V769dup, S768_D770dup, D770_N771insG, D770_P772dup, N771_H773dup, H773_V774insY and H773_V774delinsLM) revealed varying degrees of instability. For six variants, predicted activation based on the αC-helix stability and orientation, as well as TKI sensitivity, aligned well with clinical observations from the Position20 and AFACET studies. Two mutations (D770_N771insG and N771_H773dup) predicted as poor to moderate responders, showed minimal activation of the αC-helix region, warranting further investigation. CONCLUSION In conclusion, MD simulations can effectively predict patient outcomes by connecting computational results with clinical data and advancing our understanding of EGFR mutations and their therapeutic responses.
Collapse
Affiliation(s)
- F Zwierenga
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - L Zhang
- Structural Biology in Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - J Melcr
- Protyon B.V., Groningen, the Netherlands
| | - E Schuuring
- Department of Pathology and Molecular Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B A M H van Veggel
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - A J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - H J M Groen
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M R Groves
- Structural Biology in Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - A J van der Wekken
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
29
|
Liu X, Song Y, Cheng P, Liang B, Xing D. Targeting HER2 in solid tumors: Unveiling the structure and novel epitopes. Cancer Treat Rev 2024; 130:102826. [PMID: 39270365 DOI: 10.1016/j.ctrv.2024.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Human epidermal growth factor receptor-2 (HER2) is overexpressed in various solid tumor types, acting as an established therapeutic target. Over the last three decades, the fast-paced development of diverse HER2-targeted agents, notably marked by the introduction of the antibody-drug conjugate (ADC), yielding substantial improvements in survival rates. However, resistance to anti-HER2 treatments continues to pose formidable challenges. The complex structure and dynamic dimerization properties of HER2 create significant hurdles in the development of novel targeted therapeutics. In this review, we synthesize the latest insights into the structural intricacies of HER2 and present an unprecedented overview of the epitope characteristics of HER2-targeted antibodies and their derivatives. Furthermore, we delve into the correlation between anti-HER2 antibody binding epitopes and their respective functions, with a particular focus on their efficacy against resistant tumors. In addition, we highlight the potential of emerging anti-HER2 agents that target specific sites or non-overlapping epitopes, poised to transform the therapeutic landscape for HER2-positive tumors in the foreseeable future.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China
| | - Yunlong Song
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Panpan Cheng
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Nakanishi T, Koma YI, Miyako S, Torigoe R, Yokoo H, Omori M, Yamanaka K, Ishihara N, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Kakeji Y. AREG Upregulation in Cancer Cells via Direct Interaction with Cancer-Associated Fibroblasts Promotes Esophageal Squamous Cell Carcinoma Progression Through EGFR-Erk/p38 MAPK Signaling. Cells 2024; 13:1733. [PMID: 39451251 PMCID: PMC11506648 DOI: 10.3390/cells13201733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment and significantly contribute to the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Our previous study established a direct co-culture system of human bone marrow-derived mesenchymal stem cells (progenitors of CAFs) and ESCC cell lines, which facilitates the generation of CAF-like cells and enhances malignancy in ESCC cells. In this study, we further elucidated the mechanism by which CAFs promote ESCC progression using cDNA microarray analysis of monocultured ESCC cells and those co-cultured with CAFs. We observed an increase in the expression and secretion of amphiregulin (AREG) and the expression and phosphorylation of its receptor EGFR in co-cultured ESCC cells. Moreover, AREG treatment of ESCC cells enhanced their survival and migration via the EGFR-Erk/p38 MAPK signaling pathway. Immunohistochemical analysis of human ESCC tissues showed a positive correlation between the intensity of AREG expression at the tumor-invasive front and the expression level of the CAF marker FAP. Bioinformatics analysis confirmed significant upregulation of AREG in ESCC compared with normal tissues. These findings suggest that AREG plays a crucial role in CAF-mediated ESCC progression and could be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| |
Collapse
|
31
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
32
|
Zheng S, Chen R, Zhang L, Tan L, Li L, Long F, Wang T. Unraveling the future: Innovative design strategies and emerging challenges in HER2-targeted tyrosine kinase inhibitors for cancer therapy. Eur J Med Chem 2024; 276:116702. [PMID: 39059182 DOI: 10.1016/j.ejmech.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor-like protein with tyrosine kinase activity that plays a vital role in processes such as cell proliferation, differentiation, and angiogenesis. The degree of malignancy of different cancers, notably breast cancer, is strongly associated with HER2 amplification, overexpression, and mutation. Currently, widely used clinical HER2 tyrosine kinase inhibitors (TKIs), such as lapatinib and neratinib, have several drawbacks, including susceptibility to drug resistance caused by HER2 mutations and adverse effects from insufficient HER2 selectivity. To address these issues, it is essential to create innovative HER2 TKIs with enhanced safety, effectiveness against mutations, and high selectivity. Typically, SPH5030 has advanced to phase I clinical trials for its strong suppression of four HER2 mutations. This review discusses the latest research progress in HER2 TKIs, with a focus on the structural optimization process and structure-activity relationship analysis. In particular, this study highlights promising design strategies to address these challenges, providing insightful information and inspiration for future development in this field.
Collapse
Affiliation(s)
- Sixiang Zheng
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ruixian Chen
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lintao Li
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
33
|
Tydings CW, Singh B, Smith AW, Ledwitch KV, Brown BP, Lovly CM, Walker AS, Meiler J. Analysis of EGFR binding hotspots for design of new EGFR inhibitory biologics. Protein Sci 2024; 33:e5141. [PMID: 39275996 PMCID: PMC11400634 DOI: 10.1002/pro.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/16/2024]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF-like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR-driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR-driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per-residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.
Collapse
Affiliation(s)
- Claiborne W. Tydings
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Bhuminder Singh
- Department of Medicine – Division of Gastroenterology, Hepatology, and NutritionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adam W. Smith
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTexasUSA
| | - Kaitlyn V. Ledwitch
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Benjamin P. Brown
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Christine M. Lovly
- Department of Medicine – Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Allison S. Walker
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Jens Meiler
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Institute for Drug DiscoveryLeipzig University Medical SchoolLeipzigSACGermany
| |
Collapse
|
34
|
Hayashi SY, Craddock BP, Miller WT. Effects of heterologous kinase domains on growth factor receptor specificity. Cell Signal 2024; 122:111307. [PMID: 39048037 PMCID: PMC11707674 DOI: 10.1016/j.cellsig.2024.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The kinase domains of receptor tyrosine kinases (RTKs) are highly conserved, yet they are able to discriminate among potential substrates to selectively activate downstream signaling pathways. In this study, we tested the importance of catalytic domain specificity by creating two series of chimeric RTKs. In one set, the kinase domain of insulin-like growth factor I receptor (IGF1R) was replaced by the kinase domains from insulin receptor (IR), macrophage stimulating protein 1 receptor/Ron (Ron) or Src. In the other set of chimeras, the kinase domain of epidermal growth factor receptor (EGFR) was similarly replaced by the kinase domains of IR, Ron, or Src. We expressed the wild-type and chimeric forms of the receptors in mammalian cells. For some signaling events, such as recognition of IRS1, the identity of the tyrosine kinase catalytic domain did not appear to be crucial. In contrast, recognition of some sites, such as the C-terminal autophosphorylation sites on EGFR, did depend on the identity of the kinase domain. Our data also showed that ligand dependence was lost when the native kinase domains were replaced by Src, suggesting that the identity of the kinase domains could be important for proper receptor regulation. Overall, the results are consistent with the idea that the fidelity of RTK signaling depends on co-localization and targeting with substrates, as well as on the intrinsic specificity of the kinase domain.
Collapse
Affiliation(s)
- Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794; Department of Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
35
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. eLife 2024; 12:RP91619. [PMID: 39268701 PMCID: PMC11398868 DOI: 10.7554/elife.91619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O Estevam
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Edmond M Linossi
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian B Macdonald
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Carla A Espinoza
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer M Michaud
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Willow Coyote-Maestas
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine/Hematology and Oncology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
36
|
Kang X, Li R, Li X, Xu X. EGFR mutations and abnormal trafficking in cancers. Mol Biol Rep 2024; 51:924. [PMID: 39167290 DOI: 10.1007/s11033-024-09865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and a member of the ErbB receptor family. As a significant cancer driver, EGFR undergoes mutations such as gene amplification or overexpression in a wide range of malignant tumors and is closely associated with tumorigenesis. This review examines the aberrant expression of EGFR in several common cancers and summarizes the current therapeutic strategies developed for this receptor. Additionally, this review compares the differences in EGFR activation, internalization, endocytosis, and sorting in normal and cancer cells, and highlights some regulatory factors that influence its trafficking process.Kindly check and confirm the edit made in the title.Yes, correctAs per journal instructions structured abstract is mandatory kindly provideThe abstract format does not apply to Review articles.
Collapse
Affiliation(s)
- Xiang Kang
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rendong Li
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaolei Li
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China
| | - Xinping Xu
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China.
| |
Collapse
|
37
|
Whitehead CE, Ziemke EK, Frankowski-McGregor CL, Mumby RA, Chung J, Li J, Osher N, Coker O, Baladandayuthapani V, Kopetz S, Sebolt-Leopold JS. A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance. NATURE CANCER 2024; 5:1250-1266. [PMID: 38992135 PMCID: PMC11357990 DOI: 10.1038/s43018-024-00781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Despite tremendous progress in precision oncology, adaptive resistance mechanisms limit the long-term effectiveness of molecularly targeted agents. Here we evaluated the pharmacological profile of MTX-531 that was computationally designed to selectively target two key resistance drivers, epidermal growth factor receptor and phosphatidylinositol 3-OH kinase (PI3K). MTX-531 exhibits low-nanomolar potency against both targets with a high degree of specificity predicted by cocrystal structural analyses. MTX-531 monotherapy uniformly resulted in tumor regressions of squamous head and neck patient-derived xenograft (PDX) models. The combination of MTX-531 with mitogen-activated protein kinase kinase or KRAS-G12C inhibitors led to durable regressions of BRAF-mutant or KRAS-mutant colorectal cancer PDX models, resulting in striking increases in median survival. MTX-531 is exceptionally well tolerated in mice and uniquely does not lead to the hyperglycemia commonly seen with PI3K inhibitors. Here, we show that MTX-531 acts as a weak agonist of peroxisome proliferator-activated receptor-γ, an attribute that likely mitigates hyperglycemia induced by PI3K inhibition. This unique feature of MTX-531 confers a favorable therapeutic index not typically seen with PI3K inhibitors.
Collapse
Affiliation(s)
- Christopher E Whitehead
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA
| | | | | | - Rachel A Mumby
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - June Chung
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jinju Li
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nathaniel Osher
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veerabhadran Baladandayuthapani
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith S Sebolt-Leopold
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Schoenfeld K, Harwardt J, Kolmar H. Better safe than sorry: dual targeting antibodies for cancer immunotherapy. Biol Chem 2024; 405:443-459. [PMID: 38297991 DOI: 10.1515/hsz-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Antibody-based therapies are revolutionizing cancer treatment and experience a steady increase from preclinical and clinical pipelines to market share. While the clinical success of monoclonal antibodies is frequently limited by low response rates, treatment resistance and various other factors, multispecific antibodies open up new prospects by addressing tumor complexity as well as immune response actuation potently improving safety and efficacy. Novel antibody approaches involve simultaneous binding of two antigens on one cell implying increased specificity and reduced tumor escape for dual tumor-associated antigen targeting and enhanced and durable cytotoxic effects for dual immune cell-related antigen targeting. This article reviews antibody and cell-based therapeutics for oncology with intrinsic dual targeting of either tumor cells or immune cells. As revealed in various preclinical studies and clinical trials, dual targeting molecules are promising candidates constituting the next generation of antibody drugs for fighting cancer.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
39
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. eLife 2024; 12:RP92110. [PMID: 39028038 PMCID: PMC11259431 DOI: 10.7554/elife.92110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
Affiliation(s)
- Henning Mühlenbeck
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
40
|
Patnaik SK, Ayyamperumal S, Jade D, Palathoti N, Akey KS, Jupudi S, Harrison MA, Ponnambalam S, Mj N, Mjn C. Virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential inhibitors for cancer chemotherapy. J Biomol Struct Dyn 2024; 42:5551-5574. [PMID: 37387589 DOI: 10.1080/07391102.2023.2226744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Human epidermal growth factor receptors (EGFR), namely ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis including unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 that occurs in several types of cancers is associated with poor prognosis leading to resistance to ErbB1-directed therapies. In this connection, promising strategy to overcome the disadvantages of the existing chemotherapeutic drugs is the use of short peptides as anticancer agents. In the present study, we have performed virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential dual inhibitors and identified five inhibitors based on their binding affinities, ADMET analysis, MD simulation studies and calculation of free energy of binding. These natural peptides could be further exploited for developing drugs for treating cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Selvaraj Ayyamperumal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Nagarjuna Palathoti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishna Swaroop Akey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | | | | | - Nanjan Mj
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Chandrasekar Mjn
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
- School of Life Sciences, JSS Academy of Higher Education & Research(Ooty Campus), Ooty, Tamil Nadu, India
| |
Collapse
|
41
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
42
|
Beyett TS, Rana JK, Schaeffner IK, Heppner DE, Eck MJ. Structural Analysis of the Macrocyclic Inhibitor BI-4020 Binding to EGFR Kinase. ChemMedChem 2024; 19:e202300343. [PMID: 38523074 PMCID: PMC11212799 DOI: 10.1002/cmdc.202300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
A novel macrocyclic inhibitor of mutant EGFR (BI-4020) has shown promise in pre-clinical studies of T790M and C797S drug-resistant non-small cell lung cancer. To better understand the molecular basis for BI-4020 selectivity and potency, we have carried out biochemical activity assays and structural analysis with X-ray crystallography. Biochemical potencies agree with previous studies indicating that BI-4020 is uniquely potent against drug-resistant L858R/T790M and L858R/T790M/C797S variants. X-ray structures with wild-type (2.4 Å) and T790M/V948R (3.1 Å) EGFR kinase domains show that BI-4020 is likely rendered selective due to interactions with the kinase domain hinge region as well as T790M, akin to Osimertinib. Additionally, BI-4020 is also rendered more potent due to its constrained macrocycle geometry as well as additional H-bonds to conserved K745 and T845 residues in both active and inactive conformations. These findings taken together show how this novel macrocyclic inhibitor is both highly potent and selective for mutant EGFR in a reversible mechanism and motivate structure-inspired approaches to developing targeted therapies in medicinal oncology.
Collapse
Affiliation(s)
- Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jaimin K. Rana
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David E. Heppner
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Abdelmalek D, Smaoui F, Frikha F, Ben Marzoug R, Msalbi D, Souissi A, Aifa MS. Computational identification of new TKI as potential noncovalent reversible EGFR L858R/T790M inhibitors: VHTS, molecular docking, DFT study and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:4870-4887. [PMID: 37349947 DOI: 10.1080/07391102.2023.2223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
The mutations concerned with non-small cell lung cancer involving epidermal growth factor receptor of tyrosine kinase family have primarily targeted. In this study, we employed a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 50.000 Erlotinib-derived compounds as noncovalent reversible EGFRL858R/T790M inhibitors. Our HTVS work flow leverages include HTVS, SP (Standard Precision) and XP (Extra Precision) docking protocol along with its relative binding free energy calculation, cluster analysis study and ADMET properties. Then we used multiple ns-time scale molecular dynamics (MD) simulations and density functional theory (DFT) precise calculation techniques to elucidate how the bound ligand interact with the complexes conformational states involving motions both proximal and distal to the binding site. Based on glide score and protein-ligand interactions, the highest scoring molecule was selected for molecular dynamic simulation providing a complete insight into the conformational stability. A hyperfine analysis of DFT based refinement strategy highly supported their stability by strong intermolecular interactions. Together, our results demonstrate that the virtually screened top retained molecules present the best moieties introduced to Erlotinib. They exhibit interesting pharmacokinetic properties that can act as potent antitumor drug candidates than the lead compound drug and in some extent tackling the drug resistance problem which offer a springboard for further therapeutic experiments and applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorra Abdelmalek
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fahmi Smaoui
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
44
|
Kadsanit N, Worsawat P, Sakonsinsiri C, McElroy CR, Macquarrie D, Noppawan P, Hunt AJ. Sustainable methods for the carboxymethylation and methylation of ursolic acid with dimethyl carbonate under mild and acidic conditions. RSC Adv 2024; 14:16921-16934. [PMID: 38799212 PMCID: PMC11124730 DOI: 10.1039/d4ra02122c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Ursolic acid is a triterpene plant extract that exhibits significant potential as an anti-cancer, anti-tumour, and anti-inflammatory agent. Its direct use in the pharmaceutical industry is hampered by poor uptake of ursolic acid in the human body coupled with rapid metabolism causing a decrease in bioactivity. Modification of ursolic acid can overcome such issues, however, use of toxic reagents, unsustainable synthetic routes and poor reaction metrics have limited its potential. Herein, we demonstrate the first reported carboxymethylation and/or methylation of ursolic acid with dimethyl carbonate (DMC) as a green solvent and sustainable reagent under acidic conditions. The reaction of DMC with ursolic acid, in the presence of PTSA, ZnCl2, or H2SO4-SiO2 yielded the carboxymethylation product 3β-[[methoxy]carbonyl]oxyurs-12-en-28-oic acid, the methylation product 3β-methoxyurs-12-en-28-oic acid and the dehydration product urs-2,12-dien-28-oic acid. PTSA demonstrated high conversion and selectivity towards the previously unreported carboxymethylation of ursolic acid, while the application of formic acid in the system led to formylation of ursolic acid (3β-formylurs-12-en-28-oic acid) in quantitative yields via esterification, with DMC acting solely as a solvent. Meanwhile, the methylation product of ursolic acid, 3β-methoxyurs-12-en-28-oic acid, was successfully synthesised with FeCl3, demonstrating exceptional conversion and selectivity, >99% and 99%, respectively. Confirmed with the use of qualitative and quantitative green metrics, this result represents a significant improvement in conversion, selectivity, safety, and sustainability over previously reported methods of ursolic acid modification. It was demonstrated that these methods could be applied to other triterpenoids, including corosolic acid. The study also explored the potential pharmaceutical applications of ursolic acid, corosolic acid, and their derivatives, particularly in anti-inflammatory, anti-cancer, and anti-tumour treatments, using molecular ADMET and docking methods. The methods developed in this work have led to the synthesis of novel molecules, thus creating opportunities for the future investigation of biological activity and the modification of a wide range of triterpenoids applying acidic DMC systems to deliver novel active pharmaceutical intermediates.
Collapse
Affiliation(s)
- Nuttapong Kadsanit
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Pattamabhorn Worsawat
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Con R McElroy
- School of Chemistry, University of Lincoln Brayford Pool Campus Lincoln LN6 7TS UK
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Duncan Macquarrie
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Pakin Noppawan
- Department of Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
45
|
Inoue M, Ekimoto T, Yamane T, Ikeguchi M. Computational Analysis of Activation of Dimerized Epidermal Growth Factor Receptor Kinase Using the String Method and Markov State Model. J Chem Inf Model 2024; 64:3884-3895. [PMID: 38670929 DOI: 10.1021/acs.jcim.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Epidermal growth factor receptor (EGFR) activation is accompanied by dimerization. During the activation of the intracellular kinase domain, two EGFR kinases form an asymmetric dimer, and one side of the dimer (receiver) is activated. Using the string method and Markov state model (MSM), we performed a computational analysis of the structural changes in the activation of the EGFR dimer in this study. The string method reveals the minimum free-energy pathway (MFEP) from the inactive to active structure. The MSM was constructed from numerous trajectories of molecular dynamics simulations around the MFEP, which revealed the free-energy map of structural changes. In the activation of the receiver kinase, the unfolding of the activation loop (A-loop) is followed by the rearrangement of the C-helix, as observed in other kinases. However, unlike other kinases, the free-energy map of EGFR at the asymmetric dimer showed that the active state yielded the highest stability and revealed how interactions at the dimer interface induced receiver activation. As the H-helix of the activator approaches the C-helix of the receiver during activation, the A-loop unfolds. Subsequently, L782 of the receiver enters the pocket between the G- and H-helices of the activator, leading to a rearrangement of the hydrophobic residues around L782 of the receiver, which constitutes a structural rearrangement of the C-helix of the receiver from an outward to an inner position. The MSM analysis revealed long-time scale trajectories via kinetic Monte Carlo.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
46
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551866. [PMID: 37577651 PMCID: PMC10418267 DOI: 10.1101/2023.08.03.551866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase αC-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Carla A. Espinoza
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Jennifer M. Michaud
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - Eric A. Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States
- Department of Medicine/Hematology and Oncology, University of California, San Francisco, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| |
Collapse
|
47
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
48
|
Li Q, Li B, Wang Q, Wang C, Yu M, Xu T. Marine-derived EGFR inhibitors: novel compounds targeting breast cancer growth and drug resistance. Front Pharmacol 2024; 15:1396605. [PMID: 38751788 PMCID: PMC11094307 DOI: 10.3389/fphar.2024.1396605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer (BC) continues to be a major health challenge globally, ranking as the fifth leading cause of cancer mortality among women, despite advancements in cancer detection and treatment. In this study, we identified four novel compounds from marine organisms that effectively target and inhibit the Epidermal Growth Factor Receptor (EGFR), crucial for BC cell growth and proliferation. These compounds not only induced early apoptosis through Caspase-3 activation but also showed significant inhibitory effects on EGFR mutations associated with drug resistance (T790M, L858R, and L858R/T790M), demonstrating high EGFR kinase selectivity. Cell Thermal Shift Assay (CETSA) experiments indicated that Tandyukisin stabilizes EGFR in a concentration-dependent manner. Furthermore, binding competition assays using surface plasmon resonance technology revealed that Tandyukisin and Trichoharzin bound to distinct sites on EGFR and that their combined use enhanced apoptosis in BC cells. This discovery may pave the way for developing new marine-derived EGFR inhibitors, offering a promising avenue for innovative cancer treatment strategies and addressing EGFR-mediated drug resistance.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chengen Wang
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Tianfu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
49
|
Shi Q, Huang F, Wang Y, Liu H, Deng H, Chen YG. HER2 phosphorylation induced by TGF-β promotes mammary morphogenesis and breast cancer progression. J Cell Biol 2024; 223:e202307138. [PMID: 38407425 PMCID: PMC10896696 DOI: 10.1083/jcb.202307138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Transforming growth factor β (TGF-β) and HER2 signaling collaborate to promote breast cancer progression. However, their molecular interplay is largely unclear. TGF-β can activate mitogen-activated protein kinase (MAPK) and AKT, but the underlying mechanism is not fully understood. In this study, we report that TGF-β enhances HER2 activation, leading to the activation of MAPK and AKT. This process depends on the TGF-β type I receptor TβRI kinase activity. TβRI phosphorylates HER2 at Ser779, promoting Y1248 phosphorylation and HER2 activation. Mice with HER2 S779A mutation display impaired mammary morphogenesis, reduced ductal elongation, and branching. Furthermore, wild-type HER2, but not S779A mutant, promotes TGF-β-induced epithelial-mesenchymal transition, cell migration, and lung metastasis of breast cells. Increased HER2 S779 phosphorylation is observed in human breast cancers and positively correlated with the activation of HER2, MAPK, and AKT. Our findings demonstrate the crucial role of TGF-β-induced S779 phosphorylation in HER2 activation, mammary gland development, and the pro-oncogenic function of TGF-β in breast cancer progression.
Collapse
Affiliation(s)
- Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Huidong Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
50
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|