1
|
Gu X, Qiao X, Yu S, Song X, Wang L, Song L. Histone lysine-specific demethylase 1 regulates the proliferation of hemocytes in the oyster Crassostrea gigas. Front Immunol 2022; 13:1088149. [PMID: 36591234 PMCID: PMC9797820 DOI: 10.3389/fimmu.2022.1088149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Background Lysine-specific demethylase 1 (LSD1) is an essential epigenetic regulator of hematopoietic differentiation, which can specifically mono-methylate H3K4 (H3K4me1) and di-methylate H3K4 (H3K4me2) as a transcriptional corepressor. Previous reports have been suggested that it participated in hematopoiesis and embryonic development process. Here, a conserved LSD1 (CgLSD1) with a SWIRM domain and an amino oxidase (AO) domain was identified from the Pacific oyster Crassostrea gigas. Methods We conducted a comprehensive analysis by various means to verify the function of CgLSD1 in hematopoietic process, including quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, immunofluorescence assay, RNA interference (RNAi) and flow cytometry. Results The qRT-PCR analysis revealed that the transcripts of CgLSD1 were widely expressed in oyster tissues with the highest level in the mantle. And the transcripts of CgLSD1 were ubiquitously expressed during larval development with the highest expression level at the early D-veliger larvae stage. In hemocytes after Vibrio splendidus stimulation, the transcripts of CgLSD1 were significantly downregulated at 3, 6, 24, and 48 h with the lowest level at 3 h compared to that in the Seawater group (SW group). Immunocytochemical analysis showed that CgLSD1 was mainly distributed in the nucleus of hemocytes. After the CgLSD1 was knocked down by RNAi, the H3K4me1 and H3K4me2 methylation level significantly increased in hemocyte protein. Besides, the percentage of hemocytes with EdU-positive signals in the total circulating hemocytes significantly increased after V. splendidus stimulation. After RNAi of CgLSD1, the expression of potential granulocyte markers CgSOX11 and CgAATase as well as oyster cytokine-like factor CgAstakine were increased significantly in mRNA level, while the transcripts of potential agranulocyte marker CgCD9 was decreased significantly after V. splendidus stimulation. Conclusion The above results demonstrated that CgLSD1 was a conserved member of lysine demethylate enzymes that regulate hemocyte proliferation during the hematopoietic process.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China,*Correspondence: Linsheng Song,
| |
Collapse
|
2
|
Design, synthesis and biological evaluation of novel dual-acting modulators targeting both estrogen receptor α (ERα) and lysine-specific demethylase 1 (LSD1) for treatment of breast cancer. Eur J Med Chem 2020; 195:112281. [PMID: 32283297 DOI: 10.1016/j.ejmech.2020.112281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023]
Abstract
Breast cancer is a multi-factor disease, thus more and more drug combination therapies are applied in the treatment. However, there are undeniable disadvantages in drug combination therapy. Therefore, the development of new dual-targeting drugs has become a new strategy. In this study, we have developed a series of dual-acting agents targeting both estrogen receptor α (ERα) and histone demethylase based on a privileged OBHS pharmacophore scaffold developed previously by our laboratory. These novel OBHS-LSD1i conjugates showed excellent ERα binding affinity and selectivity, and exhibited potent inhibitory activity against lysine specific demethylase 1 (LSD1). Several conjugates showed higher antiproliferative efficacy in MCF-7 breast cancer cell line compared to 4-hydroxytamoxifen in vitro. Among them, the best compound 11g displayed potent inhibitory activity against LSD1 and MCF-7 cells with IC50 values of 1.55 μM and 8.79 μM, respectively. Flow cytometry analysis of apoptosis of 11g suggested that the effect of this type compounds on MCF-7 cells is partly caused by inducing apoptosis. Moreover, the molecular docking of 11g with ERα and the active site of LSD1/CoREST complex provides practical way for understanding the dual mechanism actions of this kind of compounds with the targets. As such, these compounds have shown potential to become promising leads for the development of highly efficient dual-acting modulators for breast cancer therapies.
Collapse
|
3
|
Yabuta S, Shidoji Y. Cytoplasmic translocation of nuclear LSD1 ( KDM1A) in human hepatoma cells is induced by its inhibitors. Hepat Oncol 2019; 6:HEP13. [PMID: 31205679 PMCID: PMC6566134 DOI: 10.2217/hep-2018-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim Histone-modifiable lysine-specific demethylase-1 (LSD1/KDM1A) is an oncoprotein upregulated in cancers, including hepatoma. We previously reported that the hepatoma-preventive geranylgeranoic acid (GGA) inhibits KDM1A at the same IC50 as that of the clinically used tranylcypromine. Here, we report that these inhibitors induce the cytoplasmic translocation of nuclear KDM1A in a human hepatoma-derived cell line. Methods & results Immunofluorescence studies revealed that KDM1A was cytoplasmically localized in HuH-7 cells 3 h after GGA or tranylcypromine addition. However, GGA did not affect the subcellular localization of another histone lysine-specific demethylase, KDM5A. This suggests that GGA-induced translocation is KDM1A specific. Conclusion These data demonstrate, for the first time, that KDM1A inhibitors specifically induce the cytoplasmic translocation of nuclear KDM1A.
Collapse
Affiliation(s)
- Suemi Yabuta
- Molecular & Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Academy Hills, Nagayo, Nagasaki 851-2195, Japan
| | - Yoshihiro Shidoji
- Molecular & Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Academy Hills, Nagayo, Nagasaki 851-2195, Japan
| |
Collapse
|
4
|
Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, Wang S, Wang X, Zhou J, Jin H. KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci 2018; 14:1122-1132. [PMID: 29989047 PMCID: PMC6036731 DOI: 10.7150/ijbs.25881] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is the main treatment for human cancers including gastric cancer. However, in response to chemotherapeutic drugs, tumor cells can develop drug resistance by reprogramming intracellular metabolic and epigenetic networks to maintain their intrinsic homeostasis. Previously, we have established cisplatin-resistant gastric cancer cells as a drug resistant model, and elucidated the XRCC1 as the core DNA repair mechanism of drug resistance. This study investigated the regulation of XRCC1 by lysine demethylase 5B (KDM5B) in drug resistance. We found that the methylation level of H3K4 decreased significantly in drug-resistant cells. The chemical inhibitor of H3K4 demethylases, JIB-04, restored the methylation of H3K4 and blocked the co-localization of XRCC1 and γH2AX, eventually improved drug sensitivity. We further found that the expression level of KDM5B increased significantly in drug-resistant cells. Knockdown of KDM5B increased the methylation level of H3K4 and blocked the localization of XRCC1 to the DNA damage site, leads to increased drug sensitivity. In the sensitive cells, overexpression of KDM5B suppressed H3K4 methylation levels, which resulted to resistance to cisplatin. Moreover, we found that the posttranslational modification of KDM5B is responsible for its high expression in drug-resistant cells. Through mass spectrometry screening and co-immunoprecipitation validation, we found that the molecular chaperone HSP90 forms a complex with KDM5B in drug resistance cells. Interestingly, HSP90 inhibitor 17-AAG induced KDM5B degradation in a time-and-dose-dependent manner, indicating that HSP90 protected KDM5B from protein degradation. Targeting inhibition of HSP90 and KDM5B reversed drug resistance both in vitro and in vivo. Taken together, molecular chaperon HSP90 interacted with KDM5B to protect it from ubiquitin-dependent proteasomal degradation. Increased KDM5B demethylated H3K4 and facilitated the recruitment of XRCC1 to repair damaged DNA. Therefore, inhibition of HSP90 or KDM5B represented a novel approach to reverse chemoresistance in human cancers.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Xiaoya Zhao
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Dingwei Chen
- Department of general surgery, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Qi Wei
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Mengjiao Han
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| |
Collapse
|
5
|
Diao S, Yang DM, Dong R, Wang LP, Wang JS, Du J, Wang SL, Fan Z. Enriched trimethylation of lysine 4 of histone H3 of WDR63 enhanced osteogenic differentiation potentials of stem cells from apical papilla. J Endod 2014; 41:205-11. [PMID: 25498833 DOI: 10.1016/j.joen.2014.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/14/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Dental tissue-derived mesenchymal stem cells (MSCs) are a reliable cell source for dental tissue regeneration. However, the molecular mechanisms underlying their directed differentiation remain unclear, thus limiting their use. Trimethylation of lysine 4 of histone H3 (H3K4Me3) correlates with gene activation and osteogenic differentiation. We used stem cells from apical papilla (SCAPs) to investigate the effects of genomic changes in H3K4Me3 modification at gene promoter regions on MSC osteogenic differentiation. METHODS ChIP-on-chip assays were applied to compare the H3K4Me3 profiles at gene promoter regions of undifferentiated and differentiated SCAPs. Alkaline phosphatase activity assay, alizarin red staining, quantitative analysis of calcium, the expressions of osteogenesis-related genes, and transplantation in nude mice were used to investigate the osteogenic differentiation potentials of SCAPs. RESULTS In differentiated SCAPs, 119 gene promoters exhibited >2-fold increases of H3K4Me3; in contrast, the promoter regions of 21 genes exhibited >2-fold decreases of H3K4Me3. On the basis of enriched H3K4Me3 and up-regulated gene expression on the osteogenic differentiation of SCAPs, WDR63 may be a potential regulator for mediating SCAP osteogenic differentiation. Through gain-of-function and loss-of-function studies, we discovered that WDR63 enhances alkaline phosphatase activity, mineralization, and the expression of BSP, OSX, and RUNX2 in vitro. In addition, transplant experiments in nude mice confirmed that SCAP osteogenesis is triggered by activated WDR63. CONCLUSIONS These results indicate that WDR63 is a positive enhancer for SCAP osteogenic differentiation and suggest that activation of WDR63 signaling might improve tissue regeneration mediated by MSCs of dental origin.
Collapse
Affiliation(s)
- Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Department of Pediatric Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Dong-Mei Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Department of Pediatric Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Li-Ping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jin-Song Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Song-Lin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
6
|
Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 2010; 285:18877-87. [PMID: 20388712 DOI: 10.1074/jbc.m110.105668] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PARP-1 is involved in multiple cellular processes, including transcription, DNA repair, and apoptosis. PARP-1 attaches ADP-ribose units to target proteins, including itself as a post-translational modification that can change the biochemical properties of target proteins and mediate recruitment of proteins to sites of poly(ADP-ribose) synthesis. Independent of its catalytic activity, PARP-1 binds to chromatin and promotes compaction affecting RNA polymerase II transcription. PARP-1 has a modular structure composed of six independent domains. Two homologous zinc fingers, Zn1 and Zn2, form the DNA-binding module. Zn1-Zn2 binding to DNA breaks triggers catalytic activity. Recently, we have identified a third zinc binding domain in PARP-1, the Zn3 domain, which is essential for DNA-dependent PARP-1 activity. The crystal structure of the Zn3 domain revealed a novel zinc-ribbon fold and a homodimeric Zn3 structure that formed in the crystal lattice. Structure-guided mutagenesis was used here to investigate the roles of these two features of the Zn3 domain. Our results indicate that the zinc-ribbon fold of the Zn3 domain mediates an interdomain contact crucial to assembly of the DNA-activated conformation of PARP-1. In contrast, residues located at the Zn3 dimer interface are not required for DNA-dependent activation but rather make important contributions to the chromatin compaction activity of PARP-1. Thus, the Zn3 domain has dual roles in regulating the functions of PARP-1.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
7
|
Tan J, Lu J, Huang W, Dong Z, Kong C, Li L, Gao L, Guo J, Huang B. Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS One 2009; 4:e6792. [PMID: 19710927 PMCID: PMC2729372 DOI: 10.1371/journal.pone.0006792] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 07/31/2009] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Jiang Tan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Wei Huang
- The Key Laboratory for Applied Statistics of Ministry of Education, Institute of Mathematic and Statistic, Northeast Normal University, Changchun, People's Republic of China
| | - Zhixiong Dong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Chenfei Kong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Lin Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Lina Gao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Jianhua Guo
- The Key Laboratory for Applied Statistics of Ministry of Education, Institute of Mathematic and Statistic, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JG)
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JG)
| |
Collapse
|
8
|
Kininis M, Kraus WL. A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. NUCLEAR RECEPTOR SIGNALING 2008; 6:e005. [PMID: 18301785 PMCID: PMC2254333 DOI: 10.1621/nrs.06005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/07/2008] [Indexed: 01/22/2023]
Abstract
Recent genomic analyses of transcription factor binding, histone modification, and gene expression have provided a global view of transcriptional regulation by nuclear receptors (NRs) that complements an existing large body of literature on gene-specific studies. The picture emerging from these genomic studies indicates that NRs bind at promoter-proximal and promoter-distal enhancers in conjunction with other transcription factors (e.g., activator protein-1, Sp1 and FOXA1). This binding promotes the recruitment of coregulators that mediate the posttranslational modification of histones at promoters and enhancers. Ultimately, signaling through liganded NRs stimulates changes in the occupancy of RNA polymerase II (Pol II) or the activation of preloaded Pol II at target promoters. Chromosomal looping and/or Pol II tracking may underlie promoter-enhancer communication. Interestingly, the direct target genes of NR signaling represent a limited subset of all the genes regulated by NR ligands, with the rest being regulated through secondary effects. As suggested by previous gene-specific analyses, NR-mediated outcomes are highly cell type- and promoter-specific, highlighting the complexity of transcriptional regulation by NRs and the value of genomic analyses for identifying commonly shared patterns. Overall, NRs share common themes in their patterns of localization and transcriptional regulation across mammalian genomes. In this review, we provide an overview of recent advances in the understanding of NR-mediated transcription garnered from genomic analyses of gene expression, factor localization, and target DNA sequences.
Collapse
Affiliation(s)
- Miltiadis Kininis
- Department of Molecular Biology and Genetics, Graduate Field of Genetics and Development, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|