1
|
Sztangierska W, Wyszkowski H, Pokornowska M, Kochanowicz K, Rychłowski M, Liberek K, Kłosowska A. Early steps of protein disaggregation by Hsp70 chaperone and class B J-domain proteins are shaped by Hsp110. eLife 2024; 13:RP94795. [PMID: 39404743 PMCID: PMC11479587 DOI: 10.7554/elife.94795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Hsp70 is a key cellular system counteracting protein misfolding and aggregation, associated with stress, ageing, and disease. Hsp70 solubilises aggregates and aids protein refolding through substrate binding and release cycles regulated by co-chaperones: J-domain proteins (JDPs) and nucleotide exchange factors (NEFs). Here, we elucidate the collaborative impact of Hsp110 NEFs and different JDP classes throughout Hsp70-dependent aggregate processing. We show that Hsp110 plays a major role at initial stages of disaggregation, determining its final efficacy. The NEF catalyses the recruitment of thick Hsp70 assemblies onto aggregate surface, which modifies aggregates into smaller species more readily processed by chaperones. Hsp70 stimulation by Hsp110 is much stronger with class B than class A JDPs and requires the auxiliary interaction between class B JDP and the Hsp70 EEVD motif. Furthermore, we demonstrate for the first time that Hsp110 disrupts the JDP-Hsp70 interaction. Such destabilisation of chaperone complexes at the aggregate surface might improve disaggregation, but also lead to the inhibition above the sub-stoichiometric Hsp110 optimum. Thus, balanced interplay between the co-chaperones and Hsp70 is critical to unlock its disaggregating potential.
Collapse
Affiliation(s)
- Wiktoria Sztangierska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Hubert Wyszkowski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Maria Pokornowska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Klaudia Kochanowicz
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Michal Rychłowski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| | - Agnieszka Kłosowska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of GdańskGdańskPoland
| |
Collapse
|
2
|
Jha MP, Kumar V, Ghosh A, Mapa K. Sse1, Hsp110 chaperone of yeast, controls the cellular fate during endoplasmic reticulum stress. G3 (BETHESDA, MD.) 2024; 14:jkae075. [PMID: 38577891 PMCID: PMC11152076 DOI: 10.1093/g3journal/jkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Sse1 is a cytosolic Hsp110 molecular chaperone of yeast, Saccharomyces cerevisiae. Its multifaceted roles in cellular protein homeostasis as a nucleotide exchange factor (NEF), as a protein-disaggregase and as a chaperone linked to protein synthesis (CLIPS) are well documented. In the current study, we show that SSE1 genetically interacts with IRE1 and HAC1, the endoplasmic reticulum-unfolded protein response (ER-UPR) sensors implicating its role in ER protein homeostasis. Interestingly, the absence of this chaperone imparts unusual resistance to tunicamycin-induced ER stress which depends on the intact Ire1-Hac1 mediated ER-UPR signaling. Furthermore, cells lacking SSE1 show inefficient ER-stress-responsive reorganization of translating ribosomes from polysomes to monosomes that drive uninterrupted protein translation during tunicamycin stress. In consequence, the sse1Δ strain shows prominently faster reversal from ER-UPR activated state indicating quicker restoration of homeostasis, in comparison to the wild-type (WT) cells. Importantly, Sse1 plays a critical role in controlling the ER-stress-mediated cell division arrest, which is escaped in sse1Δ strain during chronic tunicamycin stress. Accordingly, sse1Δ strain shows significantly higher cell viability in comparison to WT yeast imparting the stark fitness following short-term as well as long-term tunicamycin stress. These data, all together, suggest that cytosolic chaperone Sse1 is an important modulator of ER stress response in yeast and it controls stress-induced cell division arrest and cell death during overwhelming ER stress induced by tunicamycin.
Collapse
Affiliation(s)
- Mainak Pratim Jha
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Vignesh Kumar
- Chemical and Systems Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asmita Ghosh
- Chemical and Systems Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Koyeli Mapa
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Chakafana G, Middlemiss CJ, Zininga T, Shonhai A. Swapping the linkers of canonical Hsp70 and Hsp110 chaperones compromises both self-association and client selection. Heliyon 2024; 10:e29690. [PMID: 38707424 PMCID: PMC11066147 DOI: 10.1016/j.heliyon.2024.e29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1) and PfHsp70-z are essential cytosol localised chaperones of the malaria parasite. The two chaperones functionally interact to drive folding of several parasite proteins. While PfHsp70-1 is regarded as a canonical Hsp70 chaperone, PfHsp70-z belongs to the Hsp110 subcluster. One of the distinctive features of PfHsp70-z is its unique linker segment which delineates it from canonical Hsp70. In the current study, we elucidated the role of the linker in regulating Hsp70 self-association and client selection. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) and their respective linker switch mutants we investigated self-association of the chaperones using surface plasmon resonance (SPR) analysis. The effect of the changes on client selectivity was investigated on DnaK and its mutant through co-affinity chromatography coupled to LC-MS analysis. Our findings demonstrated that the linker is important for both Hsp70 self-association and client binding.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Chemistry and Biochemistry, Hampton University, 23668, Virginia, USA
| | - Caitlin J. Middlemiss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
4
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
5
|
Sagini JPN, Ligabue-Braun R. Fungal heat shock proteins: molecular phylogenetic insights into the host takeover. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:16. [PMID: 38483597 DOI: 10.1007/s00114-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
6
|
Xiao X, Fay A, Molina PS, Kovach A, Glickman MS, Li H. Structure of the M. tuberculosis DnaK-GrpE complex reveals how key DnaK roles are controlled. Nat Commun 2024; 15:660. [PMID: 38253530 PMCID: PMC10803776 DOI: 10.1038/s41467-024-44933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.
Collapse
Affiliation(s)
- Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
7
|
Zhang M, Bi X. Heat Shock Proteins and Breast Cancer. Int J Mol Sci 2024; 25:876. [PMID: 38255948 PMCID: PMC10815085 DOI: 10.3390/ijms25020876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Heat shock proteins (Hsps) are a group of stress-induced proteins involved in protein folding and maturation. Based on their molecular weight, Hsps can be divided into six families: small Hsps, Hsp40, Hsp60, Hsp70, Hsp90, and large Hsps. In the process of breast cancer tumorigenesis, Hsps play a central role in regulating cell reactions and functions including proliferation, metastasis, and apoptosis. Moreover, some of the critical Hsps also regulate the fine balance between the protective and destructive immunological responses within the tumor microenvironment. In this review, we systematically summarize the roles of major Hsps in breast cancer biology and point out the potential uses of these proteins in breast cancer diagnosis and therapy. Understanding the roles of different families of Hsps in breast cancer pathogenesis will help in the development of more effective prevention and treatment measures for breast cancer.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| |
Collapse
|
8
|
Rossi MA, Pozhidaeva AK, Clerico EM, Petridis C, Gierasch LM. New insights into the structure and function of the complex between the Escherichia coli Hsp70, DnaK, and its nucleotide-exchange factor, GrpE. J Biol Chem 2024; 300:105574. [PMID: 38110031 PMCID: PMC10825016 DOI: 10.1016/j.jbc.2023.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
The 70 kDa heat shock proteins (Hsp70s) play a pivotal role in many cellular functions using allosteric communication between their nucleotide-binding domain (NBD) and substrate-binding domain, mediated by an interdomain linker, to modulate their affinity for protein clients. Critical to modulation of the Hsp70 allosteric cycle, nucleotide-exchange factors (NEFs) act by a conserved mechanism involving binding to the ADP-bound NBD and opening of the nucleotide-binding cleft to accelerate the release of ADP and binding of ATP. The crystal structure of the complex between the NBD of the Escherichia coli Hsp70, DnaK, and its NEF, GrpE, was reported previously, but the GrpE in the complex carried a point mutation (G122D). Both the functional impact of this mutation and its location on the NEF led us to revisit the DnaK NBD/GrpE complex structurally using AlphaFold modeling and validation by solution methods that report on protein conformation and mutagenesis. This work resulted in a new model for the DnaK NBD in complex with GrpE in which subdomain IIB of the NBD rotates more than in the crystal structure, resulting in an open conformation of the nucleotide-binding cleft, which now resembles more closely what is seen in other Hsp/NEF complexes. Moreover, the new model is consistent with the increased ADP off-rate accompanying GrpE binding. Excitingly, our findings point to an interdomain allosteric signal in DnaK triggered by GrpE binding.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alexandra K Pozhidaeva
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Eugenia M Clerico
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Constantine Petridis
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
9
|
Daskivich GJ, Brodsky JL. The generation of detergent-insoluble clipped fragments from an ERAD substrate in mammalian cells. Sci Rep 2023; 13:21508. [PMID: 38057493 PMCID: PMC10700608 DOI: 10.1038/s41598-023-48769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Proteostasis ensures the proper synthesis, folding, and trafficking of proteins and is required for cellular and organellar homeostasis. This network also oversees protein quality control within the cell and prevents accumulation of aberrant proteins, which can lead to cellular dysfunction and disease. For example, protein aggregates irreversibly disrupt proteostasis and can exert gain-of-function toxic effects. Although this process has been examined in detail for cytosolic proteins, how endoplasmic reticulum (ER)-tethered, aggregation-prone proteins are handled is ill-defined. To determine how a membrane protein with a cytoplasmic aggregation-prone domain is routed for ER-associated degradation (ERAD), we analyzed a new model substrate, TM-Ubc9ts. In yeast, we previously showed that TM-Ubc9ts ERAD requires Hsp104, which is absent in higher cells. In transient and stable HEK293 cells, we now report that TM-Ubc9ts degradation is largely proteasome-dependent, especially at elevated temperatures. In contrast to yeast, clipped TM-Ubc9ts polypeptides, which are stabilized upon proteasome inhibition, accumulate and are insoluble at elevated temperatures. TM-Ubc9ts cleavage is independent of the intramembrane protease RHBDL4, which clips other classes of ERAD substrates. These studies highlight an unappreciated mechanism underlying the degradation of aggregation-prone substrates in the ER and invite further work on other proteases that contribute to ERAD.
Collapse
Affiliation(s)
- Grant J Daskivich
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
10
|
Tripathi A, Del Galdo S, Chandramouli B, Kumar N. Distinct dynamical features of plasmodial and human HSP70-HSP110 highlight the divergence in their chaperone-assisted protein folding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140942. [PMID: 37516289 DOI: 10.1016/j.bbapap.2023.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
HSP70 and its evolutionarily diverged co-chaperone HSP110, forms an important node in protein folding cascade. How these proteins maintain the aggregation-prone proteome of malaria parasite in functional state remains underexplored, in contrast to its human orthologs. In this study, we have probed into conformational dynamics of plasmodial HSP70 and HSP110 through multiple μs MD-simulations (ATP-state) and compared with their respective human counterparts. Simulations covered sampling of 3.4 and 2.8 μs for HSP70 and HSP110, respectively, for parasite and human orthologs. We provide a comprehensive description of the dynamic behaviors that characterize the systems and also introduce a parameter for quantifying protein rigidity. For HSP70, the interspecies comparison reveals enhanced flexibility in IA and IB subdomain within the conserved NBD, lesser solvent accessibility of the interdomain linker and distinct dynamics of the SBDβ of Pf HSP70 in comparison to Hs HSP70. In the case of HSP110, notable contrast in the dynamics of NBD, SBDβ and SBDα was observed between parasite and human ortholog. Although HSP70 and HSP110 are members of the same superfamily, we identified specific differences in the subdomain contacts in NBD, linker properties and interdomain movements in their human and parasite orthologs. Our study suggests that differences in conformational dynamics may translate into species-specific differences in the chaperoning activities of HSP70-HSP110 in the parasite and human, respectively. Dynamical features of Pf HSP70-HSP110 may contribute to the maintenance of proteostasis in the parasite during its intracellular survival in the host.
Collapse
Affiliation(s)
- Aradhya Tripathi
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, Rome, Italy
| | | | - Niti Kumar
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Luo D, Ding Q, Ma X, Zhu J, Zou K, Hong W, Wang J, Mao C, Xie Z, Wu B, Khan I, Wang X, Feng G, Huang L. Proteomic and physiological responses of contrasting two different heat-resistant orchardgrass genotypes to heat stress. Int J Biol Macromol 2023:125463. [PMID: 37348590 DOI: 10.1016/j.ijbiomac.2023.125463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
As an important forage crop worldwide, the growth and productivity of orchardgrass are greatly impacted by high temperatures. However, little information is known about how orchardgrass proteomic changes under heat conditions. Therefore, the present study investigated the proteomics and physiological changes in 667 [AKZ-NRGR667 (heat-tolerant)] and 7602 [PI237602 (heat-sensitive)] under heat stress (40/35 °C). In addition, the responses of translational regulating of heat stress in orchardgrass were analyzed through proteomic changes using the tandem mass tags (TMT) technique. Together, 410 differentially expressed proteins (DEPs) were identified from two orchardgrass genotypes under heat at 24 h. Proteomics analyses indicated that proteins related to substance metabolism, photosynthesis, and heat shock proteins (HSPs) were differentially expressed under heat stress and control conditions. Moreover, a large proportion of HSPs were expressed in the heat-tolerant genotype as compared to the heat-sensitive genotype. In conclusion, genotype 667 has higher adaptability and repairing capability due to stronger heat tolerance capacity that can make it more suited to sustaining its survival and growth than genotype 7602. These findings can provide the basis for genetic improvements in orchardgrass and other crops facing high-temperature stress or heat environment that may lead to heat resistance or tolerance.
Collapse
Affiliation(s)
- Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Ding
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xixi Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Zou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenkai Hong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunli Mao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bingchao Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Hu L, Sun C, Kidd JM, Han J, Fang X, Li H, Liu Q, May AE, Li Q, Zhou L, Liu Q. A first-in-class inhibitor of Hsp110 molecular chaperones of pathogenic fungi. Nat Commun 2023; 14:2745. [PMID: 37173314 PMCID: PMC10182041 DOI: 10.1038/s41467-023-38220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Proteins of the Hsp110 family are molecular chaperones that play important roles in protein homeostasis in eukaryotes. The pathogenic fungus Candida albicans, which causes infections in humans, has a single Hsp110, termed Msi3. Here, we provide proof-of-principle evidence supporting fungal Hsp110s as targets for the development of new antifungal drugs. We identify a pyrazolo[3,4-b] pyridine derivative, termed HLQ2H (or 2H), that inhibits the biochemical and chaperone activities of Msi3, as well as the growth and viability of C. albicans. Moreover, the fungicidal activity of 2H correlates with its inhibition of in vivo protein folding. We propose 2H and related compounds as promising leads for development of new antifungals and as pharmacological tools for the study of the molecular mechanisms and functions of Hsp110s.
Collapse
Affiliation(s)
- Liqing Hu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Justin M Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Franco JC, Nogueira MLC, Gandelini GM, Pinheiro GMS, Gonçalves CC, Barbosa LRS, Young JC, Ramos CHI. Sorghum bicolor SbHSP110 has an elongated shape and is able of protecting against aggregation and replacing human HSPH1/HSP110 in refolding and disaggregation assays. Biopolymers 2023; 114:e23532. [PMID: 36825649 DOI: 10.1002/bip.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.
Collapse
Affiliation(s)
- Juliana C Franco
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Maria L C Nogueira
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | | | | | - Conrado C Gonçalves
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP, Brazil.,Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil.,National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Sabbarini IM, Reif D, McQuown AJ, Nelliat AR, Prince J, Membreno BS, Wu CCC, Murray AW, Denic V. Zinc-finger protein Zpr1 is a bespoke chaperone essential for eEF1A biogenesis. Mol Cell 2023; 83:252-265.e13. [PMID: 36630955 PMCID: PMC10016025 DOI: 10.1016/j.molcel.2022.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.
Collapse
Affiliation(s)
- Ibrahim M Sabbarini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dvir Reif
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander J McQuown
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anjali R Nelliat
- Graduate Program in Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Prince
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Britnie Santiago Membreno
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
17
|
Chen H, Yu S, Cui Y. Label-free proteomic analysis reveals an estrous cycle transition between the follicular phase and the luteal phase in yak ovary. Anim Sci J 2023; 94:e13855. [PMID: 37437900 DOI: 10.1111/asj.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
In order to further study the physiological mechanism about yak reproduction for the improvement of its fertility, differentially expressed proteins (DEGs) of the ovary were screened during the follicular and luteal phases of yak based on label-free quantitative proteomics. The main research results were as follows: it discovered 2867 proteins during the follicular phase and 2180 proteins during the luteal phase, among which there were 2011 proteins of expression during both phases, 856 during the follicular phase, and 169 during the luteal phase. According to the bioinformatics and Gene Ontology analysis, the screened differentially expressed proteins were mostly located in the cell membrane and extracellular region and primarily acted on the activity of laminin. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the main involvement of differentially expressed proteins included steroid biosynthesis, chemokine signaling pathway, protein processing in the endoplasmic reticulum, glycerol phospholipid metabolism, carbon metabolism, PI3K-Akt signaling pathways, PPAR signaling pathways, nucleotide oligomerization domain (NOD) receptor signaling pathways, and purine metabolic pathways. Screened proteins related to reproductive function, so as to lay a theoretical foundation for the in-depth study of the regulation mechanism of yak reproduction and improve its fertility.
Collapse
Affiliation(s)
- Hong Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
20
|
Cabrera Y, Bernardo-Seisdedos G, Dublang L, Albesa-Jové D, Orozco N, Rosa Viguera A, Millet O, Muga A, Moro F. Fine-tuning of the Hsc70-based human protein disaggregase machinery by the distinctive C-terminal extension of Apg2. J Mol Biol 2022; 434:167841. [PMID: 36167183 DOI: 10.1016/j.jmb.2022.167841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain with propensity to adopt α-helical structure interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.
Collapse
Affiliation(s)
- Yovana Cabrera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | | | - Leire Dublang
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Natalia Orozco
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Ana Rosa Viguera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain.
| |
Collapse
|
21
|
Viruses Hijack ERAD to Regulate Their Replication and Propagation. Int J Mol Sci 2022; 23:ijms23169398. [PMID: 36012666 PMCID: PMC9408921 DOI: 10.3390/ijms23169398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission of the virus in the host is a process of a “game” with the host. It can be assumed that the virus has evolved various mechanisms to use the host’s functions for its replication and transmission, including ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use various processes of ERAD to promote their transmission. This review describes the occurrence of ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and immune response of the host, and we will focus on the role of E3 ubiquitin ligase.
Collapse
|
22
|
Amankwah YS, Collins P, Fleifil Y, Unruh E, Ruiz Márquez KJ, Vitou K, Kravats AN. Grp94 works upstream of BiP in protein remodeling under heat stress. J Mol Biol 2022; 434:167762. [PMID: 35905823 DOI: 10.1016/j.jmb.2022.167762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.
Collapse
Affiliation(s)
- Yaa S Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | | | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056.
| |
Collapse
|
23
|
Li Y, Gu J, Wang C, Hu J, Zhang S, Liu C, Zhang S, Fang Y, Li D. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 2022; 25:104356. [PMID: 35620440 PMCID: PMC9127583 DOI: 10.1016/j.isci.2022.104356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Hsp70 is a key molecular chaperone in the protein quality control system to safeguard protein homeostasis in cells. Previous studies have shown that Hsp70 chaperones TDP-43, a pathogenic protein associated with amyotrophic lateral sclerosis (ALS), in nuclear bodies and prevents it from the pathological aggregation. In this work, we report that Hsp70 undergoes liquid-liquid phase separation, chaperones FUS, another ALS-linked pathogenic protein, in stress granules (SGs), and prevents condensed FUS from amyloid aggregation. Knock-down of Hsp70 does not influence SG assembly but results in the liquid-to-solid transition in SGs. NMR experiments further reveal Hsp70 predominantly uses its C-terminal substrate-binding domain to interact with the low complexity domain of FUS, which represents a mechanism distinct from that interacting with TDP-43. These findings suggest that Hsp70 is widely involved in chaperoning the physiological dynamics of various membrane-less organelles and adopts different mechanisms to prevent the pathological aggregation of different proteins.
Collapse
Affiliation(s)
- Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Aranda-Caño L, Valderrama R, Pedrajas JR, Begara-Morales JC, Chaki M, Padilla MN, Melguizo M, López-Jaramillo FJ, Barroso JB. Nitro-Oleic Acid-Mediated Nitroalkylation Modulates the Antioxidant Function of Cytosolic Peroxiredoxin Tsa1 during Heat Stress in Saccharomyces cerevisiae. Antioxidants (Basel) 2022; 11:antiox11050972. [PMID: 35624836 PMCID: PMC9137801 DOI: 10.3390/antiox11050972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Heat stress is one of the abiotic stresses that leads to oxidative stress. To protect themselves, yeast cells activate the antioxidant response, in which cytosolic peroxiredoxin Tsa1 plays an important role in hydrogen peroxide removal. Concomitantly, the activation of the heat shock response (HSR) is also triggered. Nitro-fatty acids are signaling molecules generated by the interaction of reactive nitrogen species with unsaturated fatty acids. These molecules have been detected in animals and plants. They exert their signaling function mainly through a post-translational modification called nitroalkylation. In addition, these molecules are closely related to the induction of the HSR. In this work, the endogenous presence of nitro-oleic acid (NO2-OA) in Saccharomyces cerevisiae is identified for the first time by LC-MS/MS. Both hydrogen peroxide levels and Tsa1 activity increased after heat stress with no change in protein content. The nitroalkylation of recombinant Tsa1 with NO2-OA was also observed. It is important to point out that cysteine 47 (peroxidatic) and cysteine 171 (resolving) are the main residues responsible for protein activity. Moreover, the in vivo nitroalkylation of Tsa1 peroxidatic cysteine disappeared during heat stress as the hydrogen peroxide generated in this situation caused the rupture of the NO2-OA binding to the protein and, thus, restored Tsa1 activity. Finally, the amino acid targets susceptible to nitroalkylation and the modulatory effect of this PTM on the enzymatic activity of Tsa1 are also shown in vitro and in vivo. This mechanism of response was faster than that involving the induction of genes and the synthesis of new proteins and could be considered as a key element in the fine-tuning regulation of defence mechanisms against oxidative stress in yeast.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - José Rafael Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - María N. Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain;
| | | | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
- Correspondence:
| |
Collapse
|
25
|
Elkenani M, Barakat AZ, Held T, Rodrigues DM, Mobarak S, Swarnka S, Adham IM, Mohamed BA. Heat shock protein A4 ablation leads to skeletal muscle myopathy associated with dysregulated autophagy and induced apoptosis. J Transl Med 2022; 20:229. [PMID: 35568953 PMCID: PMC9107738 DOI: 10.1186/s12967-022-03418-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Molecular chaperones assist protein folding, facilitate degradation of misfolded polypeptides, and thereby maintain protein homeostasis. Impaired chaperone activity leads to defective protein quality control that is implicated in multiple skeletal muscle diseases. The heat shock protein A4 (HSPA4) acts as a co-chaperone for HSP70. Previously, we showed that Hspa4 deletion causes impaired protein homeostasis in the heart. However, its functional role in skeletal muscle has not been explored. METHODS We performed a comparative phenotypic and biochemical analyses of Hspa4 knockout (KO) mice with wild-type (WT) littermates. RESULTS HSPA4 is markedly upregulated in regenerating WT muscle in vivo, and in differentiated myoblasts in vitro. Hspa4-KO mice are marked by growth retardation and increased variability in body weight, accompanied by 35% mortality rates during the peri-weaning period. The surviving Hspa4-KO mice experienced progressive skeletal muscle myopathy, characterized by increased number of muscle fibers with centralized nuclei, heterogeneous myofiber size distribution, inflammatory cell infiltrates and upregulation of embryonic and perinatal myosin heavy chain transcripts. Hspa4-KO muscles demonstrated an accumulation of autophagosome-associated proteins including microtubule associated protein1 light chain 3-II (LC3-II) and p62/sequestosome accompanied by increased number of TUNEL-positive nuclei. CONCLUSIONS Our findings underscore the indispensable role of HSPA4 in maintenance of muscle integrity through contribution in skeletal muscle autophagy and apoptosis, which might provide a novel therapeutic strategy for skeletal muscle morbidities.
Collapse
Affiliation(s)
- Manar Elkenani
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Amal Z Barakat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Torsten Held
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Marques Rodrigues
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sherok Mobarak
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Surabhi Swarnka
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
26
|
Kojima R, Takai S, Osada H, Yamamoto L, Furukawa M, Gullans SR. Novel function of the C-Terminal region of the Hsp110 family member Osp94 in unfolded protein refolding. J Cell Sci 2022; 135:274905. [PMID: 35237814 DOI: 10.1242/jcs.258542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Osp94, a member of the Hsp110/Sse1 family of heat shock proteins, has a longer C-terminus than Hsc70/Hsp70, composed of the loop region with partial SBDβ (L), and SBDα and the C-terminal extension (H), but the functions of these domains are poorly understood. Osp94 suppressed heat-induced aggregation of luciferase (Luc). Osp94-bound heat-inactivated Luc was reactivated in the presence of rabbit reticulocyte lysate (RRL) and/or a combination of Hsc70 and Hsp40. Targeted deletion mutagenesis revealed that the SBDβ and H domains of Osp94 are critical for protein disaggregation and RRL-mediated refolding. Reactivation of Hsp90-bound heat-inactivated Luc was abolished in the absence of RRL but compensated by PA28α, a proteasome activator. Interestingly, the LH domain also reactivated heat-inactivated Luc, independent of PA28α. Biotin-tag cross-linking experiments indicated that the LH domain and PA28α interact with Luc bound by Hsp90 during refolding. A chimera protein in which the H domain was exchanged for PA28α also mediated disaggregation and reactivation of heat-inactivated Luc. These results indicate that Osp94 acts as a holdase and that the C-terminal region plays a PA28α-like role in the refolding of unfolded proteins.
Collapse
Affiliation(s)
- Ryoji Kojima
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Shinichi Takai
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Hinako Osada
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Lina Yamamoto
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Misa Furukawa
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | | |
Collapse
|
27
|
Xu Y, Shi F, Li Y, Zong S, Tao J. Genome-wide identification and expression analysis of the Hsp gene superfamily in Asian long-horned beetle (Anoplophora glabripennis). Int J Biol Macromol 2022; 200:583-592. [PMID: 35016971 DOI: 10.1016/j.ijbiomac.2022.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/29/2023]
Abstract
The environmental adaptability of insects has been a key focus of ecological research. As molecular chaperones, Heat shock proteins (Hsps) play an important role in insect responses to environmental stress. Anoplophora glabripennis is a destructive pest of broad-leaved trees such as poplars. The ability to adapt to low temperature is an important factor for successful colonization of A. glabripennis in new diffusion area. However, the roles of Hsp in the stress responses in A. glabripennis have not been established. In this study, we identified 47 Hsp genes, including 3 Hsp90, 14 Hsp70, 9 Hsp60, and 21 sHsp genes. The Hsp gene family expanded substantially in A. glabripennis. The differences in expression patterns may be related to the type and intensity of stress. Larval overwintering transcriptomes showed that 13 Hsp genes were not induced during overwintering and 21 Hsp genes were involved in the regulation of life activities under non-stress conditions. In a quantitative RT-PCR analysis, AglaHsp90-2 responded more quickly under gradient cooling treatments; AglaHsp90-2 and AglaHsp90-3 were sensitive to treatment at 0 °C for 6 h under instantaneous cooling. Our results provide a theoretical basis for clarifying the molecular mechanism of Hsp genes in A. glabripennis in responsing to environmental stresses.
Collapse
Affiliation(s)
- Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Yurong Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
28
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
29
|
Wang RYR, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature 2022; 601:460-464. [PMID: 34937942 PMCID: PMC9179170 DOI: 10.1038/s41586-021-04252-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.
Collapse
Affiliation(s)
- Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Kirschke
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alexander G. Myasnikov
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Present address: Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Correspondence and requests for materials should be addressed to David A. Agard.
| |
Collapse
|
30
|
Abi Zamer B, El-Huneidi W, Eladl MA, Muhammad JS. Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells 2021; 10:cells10112862. [PMID: 34831085 PMCID: PMC8616065 DOI: 10.3390/cells10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells can reprogram their metabolic activities and undergo uncontrolled proliferation by utilizing the power of heat shock proteins (HSPs). HSPs are highly conserved chaperones that facilitate the folding of intracellular proteins under stress. Constitutively, HSPs are expressed at low levels, but their expression upregulates in response to a wide variety of insults, including anticancer drugs, allowing cancer cells to develop chemoresistance. In recent years, several researchers have reported that HSPs could be an important therapeutic target in difficult-to-treat cancers such as colorectal carcinoma (CRC). Worldwide, CRC is the second most common type of cancer and the second leading cause of cancer-related deaths. The molecular complexity of CRC and the coexisting inflammatory conditions present a significant obstacle to developing effective treatment. Recently, considerable progress has been made in enhancing our understanding of the role of HSPs in CRC pathogenesis. Moreover, novel therapeutic strategies targeting HSPs, either alone or in combination with other anticancer agents, have been reported. Herein, we present an overview of the functional mechanisms and the diagnostic and prognostic potential of HSPs in CRC. We also discuss emerging anti-CRC strategies based on targeting HSPs.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6-5057293
| |
Collapse
|
31
|
Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 2021; 12:5999. [PMID: 34650037 PMCID: PMC8516981 DOI: 10.1038/s41467-021-25966-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Collapse
Affiliation(s)
- Matthias M. Schneider
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Saurabh Gautam
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,Present Address: ViraTherapeutics GmbH, 6063 Rum, Austria
| | - Therese W. Herling
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ewa Andrzejewska
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Georg Krainer
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Alyssa M. Miller
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Victoria A. Trinkaus
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Quentin A. E. Peter
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Francesco Simone Ruggeri
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bracher
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - F. Ulrich Hartl
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK ,grid.5335.00000000121885934Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge, CB3 0HE UK
| |
Collapse
|
32
|
Molecular chaperones and Parkinson's disease. Neurobiol Dis 2021; 160:105527. [PMID: 34626793 DOI: 10.1016/j.nbd.2021.105527] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage.
Collapse
|
33
|
Wang W, Liu Q, Liu Q, Hendrickson WA. Conformational equilibria in allosteric control of Hsp70 chaperones. Mol Cell 2021; 81:3919-3933.e7. [PMID: 34453889 DOI: 10.1016/j.molcel.2021.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023]
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70R-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70S-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
34
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
35
|
Lee K, Ziegelhoffer T, Delewski W, Berger SE, Sabat G, Craig EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun 2021; 12:5666. [PMID: 34580293 PMCID: PMC8476630 DOI: 10.1038/s41467-021-25930-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, an Hsp70 molecular chaperone triad assists folding of nascent chains emerging from the ribosome tunnel. In fungi, the triad consists of canonical Hsp70 Ssb, atypical Hsp70 Ssz1 and J-domain protein cochaperone Zuo1. Zuo1 binds the ribosome at the tunnel exit. Zuo1 also binds Ssz1, tethering it to the ribosome, while its J-domain stimulates Ssb’s ATPase activity to drive efficient nascent chain interaction. But the function of Ssz1 and how Ssb engages at the ribosome are not well understood. Employing in vivo site-specific crosslinking, we found that Ssb(ATP) heterodimerizes with Ssz1. Ssb, in a manner consistent with the ADP conformation, also crosslinks to ribosomal proteins across the tunnel exit from Zuo1. These two modes of Hsp70 Ssb interaction at the ribosome suggest a functionally efficient interaction pathway: first, Ssb(ATP) with Ssz1, allowing optimal J-domain and nascent chain engagement; then, after ATP hydrolysis, Ssb(ADP) directly with the ribosome. Here, the authors use in vivo site-specific crosslinking to provide molecular-level insight into how the fungal Hsp70 chaperone system — the Ssb:Ssz1:Zuo1 triad — assists the folding process for the nascent peptide chain emerging from the ribosome tunnel.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Scott E Berger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Chemistry, Lafayette College, Easton, PA, 18042, USA.,Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
36
|
Li H, Hu L, Cuffee CW, Mohamed M, Li Q, Liu Q, Zhou L, Liu Q. Interdomain interactions dictate the function of the Candida albicans Hsp110 protein Msi3. J Biol Chem 2021; 297:101082. [PMID: 34403698 PMCID: PMC8424595 DOI: 10.1016/j.jbc.2021.101082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 01/27/2023] Open
Abstract
Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Liqing Hu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Crist William Cuffee
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mahetab Mohamed
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
37
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
38
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
39
|
Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. Heat Shock Proteins: Connectors between Heart and Kidney. Cells 2021; 10:cells10081939. [PMID: 34440708 PMCID: PMC8391307 DOI: 10.3390/cells10081939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney–heart axis.
Collapse
Affiliation(s)
- Carolina Victória Cruz Junho
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| | - Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ainhoa Rodriguez de Yurre
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| |
Collapse
|
40
|
Wang Y, Li H, Sun C, Liu Q, Zhou L, Liu Q. Purification and biochemical characterization of Msi3, an essential Hsp110 molecular chaperone in Candida albicans. Cell Stress Chaperones 2021; 26:695-704. [PMID: 34047887 PMCID: PMC8275692 DOI: 10.1007/s12192-021-01213-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Hsp110s are unique and essential molecular chaperones in the eukaryotic cytosol. They play important roles in maintaining cellular protein homeostasis. Candida albicans is the most prevalent yeast opportunistic pathogen that causes fungal infections in humans. As the only Hsp110 in Candida albicans, Msi3 is essential for the growth and infection of Candida albicans. In this study, we have expressed and purified Msi3 in nucleotide-free state and carried out biochemical analyses. Sse1 is the major Hsp110 in budding yeast S. cerevisiae and the best characterized Hsp110. Msi3 can substitute Sse1 in complementing the temperature-sensitive phenotype of S. cerevisiae carrying a deletion of SSE1 gene although Msi3 shares only 63.4% sequence identity with Sse1. Consistent with this functional similarity, the purified Msi3 protein shares many similar biochemical activities with Sse1 including binding ATP with high affinity, changing conformation upon ATP binding, stimulating the nucleotide-exchange for Hsp70, preventing protein aggregation, and assisting Hsp70 in refolding denatured luciferase. These biochemical characterizations suggested that Msi3 can be used as a model for studying the molecular mechanisms of Hsp110s.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Cancan Sun
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
41
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2021; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
42
|
Inhibition of the Human Hsc70 System by Small Ligands as a Potential Anticancer Approach. Cancers (Basel) 2021; 13:cancers13122936. [PMID: 34208232 PMCID: PMC8230956 DOI: 10.3390/cancers13122936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High levels of Heat shock proteins (Hsps) in specific cancers are usually linked to a poor prognosis, tumor progression, invasiveness, and resistance to treatment. Chaperone inhibition could therefore be toxic for cancer cells due to their high dependence on chaperone activity to survive. This study shows the potential to repurpose the small chemical compound pinaverium bromide, currently used to treat functional gastrointestinal disorders, as a possible antitumor drug since it displays a marked toxicity against two melanoma cell lines without affecting the viability of fibroblast and primary melanocytes. This compound interacts with structural regions shared by representatives of the Hsp70 and Hsp110 families, inhibiting the substrate remodeling ability of the Hsp70 system in vitro and in a cellular context. Abstract Heat shock protein (Hsp) synthesis is upregulated in a wide range of cancers to provide the appropriate environment for tumor progression. The Hsp110 and Hsp70 families have been associated to cancer cell survival and resistance to chemotherapy. In this study, we explore the strategy of drug repurposing to find new Hsp70 and Hsp110 inhibitors that display toxicity against melanoma cancer cells. We found that the hits discovered using Apg2, a human representative of the Hsp110 family, as the initial target bind also to structural regions present in members of the Hsp70 family, and therefore inhibit the remodeling activity of the Hsp70 system. One of these compounds, the spasmolytic agent pinaverium bromide used for functional gastrointestinal disorders, inhibits the intracellular chaperone activity of the Hsp70 system and elicits its cytotoxic activity specifically in two melanoma cell lines by activating apoptosis. Docking and molecular dynamics simulations indicate that this compound interacts with regions located in the nucleotide-binding domain and the linker of the chaperones, modulating their ATPase activity. Thus, repurposing of pinaverium bromide for cancer treatment appears as a promising novel therapeutic approach.
Collapse
|
43
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
44
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
45
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
46
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
47
|
Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes. eLife 2020; 9:62601. [PMID: 33295873 PMCID: PMC7758071 DOI: 10.7554/elife.62601] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted proteins and as an intracellular calcium storage compartment, facilitating calcium-release-dependent cellular processes. ER calcium depletion robustly activates the unfolded protein response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar proteostasis. Here, we report that calcium selectively affects the dynamics of the abundant metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium-replete ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring substrate retention. Conversely, in the calcium-depleted ER, relative acceleration of ADP-to-ATP exchange favours substrate release. These findings explain the rapid dissociation of certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in secretory cells.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Perera
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aron Czako
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
49
|
Temiz Ö. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23199-23205. [PMID: 32333357 DOI: 10.1007/s11356-020-08923-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Emamectin benzoate (EMB), which is used as a pesticide in agriculture, household, and veterinary medicine, can cause tissue damage with oxidative toxicity and can be considered as inducing apoptosis. In the present study, male mice were conducted by oral administration in EMB doses 25, 50, and 100 (mg/kg/day) for 14 days. Glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) levels using spectrophotometric methods were measured. 8-hydroxy-2'-deoxyguanosine (8-OHdG) which is DNA oxidation biomarker and, stress protein (HSP70) levels, caspase 3 enzyme activities were measured by ELISA techniques. This study shows that in vivo administration of EMB caused a marked induction of oxidative damage in liver tissue as demonstrated by an increased level of TBARS and reduced GSH level. The increase in HSP70 level did not prevent the apoptosis caused by the increase of caspase 3 enzyme activity. Toxicity caused by EMB also showed the formation of genotoxicity with an increase in DNA oxidation biomarker 8-OHdG levels. As a result of the study, the effects of toxicity caused by EMB on lipid; protein; and DNA, structural macromolecules in cells, and the importance of enzymatic and non-enzymatic bonds of the cell's protective systems were determined. Consequently, under experimental conditions, EMB exposure caused toxicity in the liver of male mice, and significant adverse effects were determined with biomarkers.
Collapse
Affiliation(s)
- Özge Temiz
- Department of Biology, Faculty of Science and Letters, University of Cukurova, Adana, Turkey.
| |
Collapse
|
50
|
Tittelmeier J, Sandhof CA, Ries HM, Druffel-Augustin S, Mogk A, Bukau B, Nussbaum-Krammer C. The HSP110/HSP70 disaggregation system generates spreading-competent toxic α-synuclein species. EMBO J 2020; 39:e103954. [PMID: 32449565 PMCID: PMC7327497 DOI: 10.15252/embj.2019103954] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
The accumulation and prion-like propagation of α-synuclein and other amyloidogenic proteins are associated with devastating neurodegenerative diseases. Metazoan heat shock protein HSP70 and its co-chaperones DNAJB1 and HSP110 constitute a disaggregation machinery that is able to disassemble α-synuclein fibrils in vitro, but its physiological effects on α-synuclein toxicity are unknown. Here, we depleted Caenorhabditis elegans HSP-110 and monitored the consequences on α-synuclein-related pathological phenotypes such as misfolding, intercellular spreading, and toxicity in C. elegans in vivo models. Depletion of HSP-110 impaired HSP70 disaggregation activity, prevented resolubilization of amorphous aggregates, and compromised the overall cellular folding capacity. At the same time, HSP-110 depletion reduced α-synuclein foci formation, cell-to-cell transmission, and toxicity. These data demonstrate that the HSP70 disaggregation activity constitutes a double-edged sword, as it is essential for maintaining cellular proteostasis but also involved in the generation of toxic amyloid-type protein species.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Heidrun Maja Ries
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Druffel-Augustin
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|