1
|
Haploinsufficiency of GCP4 induces autophagy and leads to photoreceptor degeneration due to defective spindle assembly in retina. Cell Death Differ 2019; 27:556-572. [PMID: 31209365 PMCID: PMC7206048 DOI: 10.1038/s41418-019-0371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
Retinopathy, owing to damage to the retina, often causes vision impairment, and the underlying molecular mechanisms are largely unknown. Using a gene targeting strategy, we generated mice with the essential gene Tubgcp4 knocked out. Homozygous mutation of Tubgcp4 resulted in early embryonic lethality due to abnormal spindle assembly caused by GCP4 (gamma-tubulin complex protein 4, encoded by Tubgcp4) depletion. Heterozygotes were viable through dosage compensation of one wild-type allele. However, haploinsufficiency of GCP4 affected the assembly of γ-TuRCs (γ-tubulin ring complexes) and disrupted autophagy homeostasis in retina, thus leading to photoreceptor degeneration and retinopathy. Notably, GCP4 exerted autophagy inhibition by competing with ATG3 for interaction with ATG7, thus interfering with lipidation of LC3B. Our findings justify dosage effects of essential genes that compensate for null alleles in viability of mutant mice and uncover dosage-dependent roles of GCP4 in embryo development and retinal homeostasis. These data have also clinical implications in genetic counseling on embryonic lethality and in development of potential therapeutic targets associated with retinopathy.
Collapse
|
2
|
Larsson VJ, Jafferali MH, Vijayaraghavan B, Figueroa RA, Hallberg E. Mitotic spindle assembly and γ-tubulin localisation depend on the integral nuclear membrane protein Samp1. J Cell Sci 2018. [PMID: 29514856 PMCID: PMC5963844 DOI: 10.1242/jcs.211664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have investigated a possible role for the inner nuclear membrane protein Samp1 (also known as TMEM201) in the mitotic machinery. Live-cell imaging showed that Samp1a–YFP (Samp1a is the short isoform of Samp1) distributed as filamentous structures in the mitotic spindle, partially colocalising with β-tubulin. Samp1 depletion resulted in an increased frequency of cells with signs of chromosomal mis-segregation and prolonged metaphase, indicating problems with spindle assembly and/or chromosomal alignment. Consistent with this, mitotic spindles in Samp1-depleted cells contained significantly lower levels of β-tubulin and γ-tubulin, phenotypes that were rescued by overexpression of Samp1a–YFP. We found that Samp1 can bind directly to γ-tubulin and that Samp1 co-precipitated with γ-tubulin and the HAUS6 subunit of the Augmin complex in live cells. The levels of HAUS6, in the mitotic spindle also decreased after Samp1 depletion. We show that Samp1 is involved in the recruitment of HAUS6 and γ-tubulin to the mitotic spindle. Samp1 is the first inner nuclear membrane protein shown to have a function in mitotic spindle assembly. Highlighted Article: The transmembrane inner nuclear membrane protein Samp1 has a functional role in recruitment of γ-tubulin to the mitotic spindle and correct spindle assembly.
Collapse
Affiliation(s)
- Veronica J Larsson
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | - Ricardo A Figueroa
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
4
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Reprint of "Nuclear transport factors: global regulation of mitosis". Curr Opin Cell Biol 2015. [PMID: 26196321 DOI: 10.1016/j.ceb.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator – the γ-TuRC complex – and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
5
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 2015; 35:78-90. [PMID: 25982429 DOI: 10.1016/j.ceb.2015.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
6
|
Jiang H, He X, Wang S, Jia J, Wan Y, Wang Y, Zeng R, Yates J, Zhu X, Zheng Y. A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell 2014; 28:268-81. [PMID: 24462186 DOI: 10.1016/j.devcel.2013.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Equal chromosome segregation requires proper assembly of many proteins, including Bub3, onto kinetochores to promote kinetochore-microtubule interactions. By screening for mitotic regulators in the spindle envelope and matrix (Spemix), we identify a conserved Bub3 interacting and GLE-2-binding sequence (GLEBS) containing ZNF207 (BuGZ) that associates with spindle microtubules and regulates chromosome alignment. Using its conserved GLEBS, BuGZ directly binds and stabilizes Bub3. BuGZ also uses its microtubule-binding domain to enhance the loading of Bub3 to kinetochores that have assumed initial interactions with microtubules in prometaphase. This enhanced Bub3 loading is required for proper chromosome alignment and metaphase to anaphase progression. Interestingly, we show that microtubules are required for the highest kinetochore loading of Bub3, BubR1, and CENP-E during prometaphase. These findings suggest that BuGZ not only serves as a molecular chaperone for Bub3 but also enhances its loading onto kinetochores during prometaphase in a microtubule-dependent manner to promote chromosome alignment.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Xiaonan He
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shusheng Wang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Junling Jia
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Yihan Wan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Yueju Wang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Zeng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA.
| |
Collapse
|