1
|
Wen H, Dai F, Wang H, Lin Y, Xu Z, Lyu Z. Identification and validation of SLC16A8 as a prognostic biomarker in clear cell renal cell carcinoma: a six-gene solute carrier signature. Exp Cell Res 2025; 448:114567. [PMID: 40268265 DOI: 10.1016/j.yexcr.2025.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Solute carrier (SLC) proteins are essential for nutrient transport, influencing tumor metabolism and growth while preserving cellular homeostasis. Despite the critical biological functions of these transporters, their applicability as therapeutic targets in clear cell renal cell carcinoma (ccRCC) remains largely unexplored. In the current study, we analyzed transcriptomic data and discovered 77 differentially expressed SLC genes in ccRCC, with 24 demonstrating predictive potential. Using Lasso regression, we developed a prognostic signature comprising six key genes: SLC2A3, SLC11A1, SLC14A1, SLC16A8, SLC22A6, and SLC28A1. This signature demonstrated strong diagnostic performance and served as an independent predictor of patient survival. Further analysis integrating clinical variables and risk scores enabled the construction of nomograms, which exhibited high predictive accuracy for patient outcomes. Immune profiling revealed distinct infiltration patterns between risk groups: high-risk patients showed elevated levels of memory B cells, activated CD4+ T cells, regulatory T cells (Tregs), M0 macrophages, and neutrophils. In contrast, their low-risk counterparts showed M1 macrophages, resting dendritic cells, and resting mast cells. Validation experiments confirmed that SLC16A8 was significantly overexpressed in ccRCC tissues compared to normal samples, correlating with poor prognosis. Functional studies demonstrated that SLC16A8 knockdown impaired tumor progression in vitro. Consistent with these findings, in vivo experiments demonstrated reduced tumor growth upon SLC16A8 knockdown. Mechanistically, decreased SLC16A8 attenuated PI3K/AKT signaling, suggesting a potential regulatory pathway in ccRCC progression. In summary, we established a six-gene SLC signature with significant prognostic value in ccRCC. Among these genes, SLC16A8 emerged as a promising biomarker and therapeutic target, warranting further investigation.
Collapse
Affiliation(s)
- Hantao Wen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fang Dai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Huming Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Yu Lin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zihan Xu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Zhaojie Lyu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China.
| |
Collapse
|
2
|
Cho SY, Eun HS, Kim J, Ko YD, Rou WS, Joo JS. The Solute Carrier Superfamily as Therapeutic Targets in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2025; 16:463. [PMID: 40282424 PMCID: PMC12027052 DOI: 10.3390/genes16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a challenging and malignant cancer, primarily originates from the exocrine cells of the pancreas. The superfamily of solute carrier (SLC) transporters, consisting of more than 450 proteins divided into 65 families, is integral to various cellular processes and represents a promising target in precision oncology. As therapeutic targets, SLC transporters are explored through an integrative analysis. MATERIALS AND METHODS The expression profiles of SLCs were systematically analyzed using mRNA data from The Cancer Genome Atlas (TCGA) and protein data from the Human Protein Atlas (HPA). Survival analysis was examined to evaluate the prognostic significance of SLC transporters for overall survival (OS) and disease-specific survival (DSS). Genetic alterations were examined using cBioPortal, while structural studies were performed with AlphaFold and AlphaMissense to predict functional impacts. Furthermore, Gene Set Enrichment Analysis (GSEA) was carried out to identify oncogenic pathways linked to SLC transporter expression. RESULTS SLC transporters were significantly upregulated in tumors relative to normal tissues. Higher expression levels of SLC39A10 (HR = 1.89, p = 0.0026), SLC22B5 (HR = 1.84, p = 0.0042), SLC55A2 (HR = 2.15, p = 0.00023), and SLC30A6 (HR = 1.90, p = 0.003) were strongly associated with unfavorable OS, highlighting their connection to poor prognosis in PDAC. GSEA highlighted that these four transporters are significantly involved in key oncogenic pathways, such as epithelial-mesenchymal transition (EMT), TNF-α signaling, and angiogenesis. CONCLUSIONS The study identifies four SLCs as therapeutic targets in PDAC, highlighting their crucial role in essential metabolic pathways. These findings lay the groundwork for developing next-generation metabolic anti-cancer treatment to improve survival for PDAC patients.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
- CHOMEDICINE Inc., TIPS Town, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jaejeung Kim
- Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Yun Dam Ko
- Seoul Teunteun Rehabilitation Clinic, Jeungpyeong-gun, Chungcheongbuk-do 27937, Republic of Korea
| | - Woo Sun Rou
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jong Seok Joo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
3
|
Belleza OJV, Saridakis I, Singer NK, Westergaard X, Armentia Matheu S, Lemmerer M, Riomet M, Sánchez-Murcia PA, Kastner N, Rukavina S, Xiao Y, Jäntsch K, Niello M, Schicker K, Sulzer D, González L, Maulide N, Sitte HH. Fluorescent PyrAte-( S)-citalopram conjugates enable imaging of the serotonin transporter in living tissue. Chem Sci 2025; 16:6003-6013. [PMID: 40070471 PMCID: PMC11891579 DOI: 10.1039/d4sc06949h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Fluorescent labeling techniques have enabled the visualization of various biomolecules, cellular structures, and their associated physiological processes. At the same time, there remains a demand for developing novel fluorescent compounds possessing unique chemical properties for biological imaging. A recently developed class of fluorophores, termed PyrAtes, displays optimal brightness and large Stokes shifts that are ideal for fluorescence microscopy. Herein, we report the development of PyrAte-based fluorescently labeled ligands that bind to the serotonin transporter (SERT), a membrane transport protein important for neurotransmitter homeostasis, which hitherto has not been visualized in its native environment using fluorescent small molecules. The design of a PyrAte fluorophore attached to (S)-citalopram, a selective serotonin reuptake inhibitor, resulted in the synthesis of two fluorescent drug conjugates varying in linker length: PYR-C6-CIT and PYR-C3-CIT. Docking and molecular dynamics experiments are performed to estimate their binding affinities to SERT. Our in vitro experiments confirm both compounds are effectively binding to SERT overexpressed in human embryonic kidney 293 cells, with the shorter conjugate displaying improved SERT affinity and membrane staining properties. Furthermore, ex vivo imaging of endogenous SERT was demonstrated in acute mouse brain slices using two-photon microscopy. The large Stokes shift of the PyrAte fluorophore enables simultaneous detection of its own fluorescence signal at 500 nm along with that of a yellow fluorescent protein-based serotonergic marker. Our findings provide novel tools for unprecedented SERT visualization and establish the utility of PyrAtes for the selective staining of membrane proteins in live cells and tissue.
Collapse
Affiliation(s)
- Oliver J V Belleza
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
| | - Iakovos Saridakis
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
| | - Nadja K Singer
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 17 1090 Vienna Austria
| | - Xavier Westergaard
- Department of Psychiatry, Columbia University Irving Medical Center New York New York 10032 USA
- Department of Biological Sciences, Columbia University New York New York 10027 USA
| | - Sergio Armentia Matheu
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
| | - Miran Lemmerer
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
| | - Margaux Riomet
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
| | - Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 17 1090 Vienna Austria
| | - Nina Kastner
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
| | - Stefanie Rukavina
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
| | - Yi Xiao
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14 1090 Vienna Austria
| | - Kathrin Jäntsch
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
| | - Marco Niello
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
| | - Klaus Schicker
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
- Division of Neurophysiology and pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
| | - David Sulzer
- Departments of Psychiatry, Neurology and Pharmacology, Columbia University Irving Medical Center New York New York 10032 USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute New York New York 10032 USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 17 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straβe 38 1090 Vienna Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14 1090 Vienna Austria
- Research Platform NeGeMac Josef-Holaubek-Platz 2 (UZA II) 1090 Vienna Austria
| | - Harald H Sitte
- Centre of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Währinger Straβe 13A 1090 Vienna Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University Amman Jordan
- Center for Addiction Research and Science - AddRess, Medical University Vienna Währinger Straβe 13A 1090 Vienna Austria
| |
Collapse
|
4
|
Holdener C, De Vlaminck I. Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640406. [PMID: 40060619 PMCID: PMC11888426 DOI: 10.1101/2025.02.26.640406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Finding correlations in spatial gene expression is fundamental in spatial transcriptomics, as co-expressed genes within a tissue are linked by regulation, function, pathway, or cell type. Yet, sparsity and noise in spatial transcriptomics data pose significant analytical challenges. Here, we introduce Smoothie, a method that denoises spatial transcriptomics data with Gaussian smoothing and constructs and integrates genome-wide co-expression networks. Utilizing implicit and explicit parallelization, Smoothie scales to datasets exceeding 100 million spatially resolved spots with fast run times and low memory usage. We demonstrate how co-expression networks measured by Smoothie enable precise gene module detection, functional annotation of uncharacterized genes, linkage of gene expression to genome architecture, and multi-sample comparisons to assess stable or dynamic gene expression patterns across tissues, conditions, and time points. Overall, Smoothie provides a scalable and versatile framework for extracting deep biological insights from high-resolution spatial transcriptomics data.
Collapse
Affiliation(s)
- Chase Holdener
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Tsalagradas P, Eke C, Andrews C, MacMillan F. Exploring the Structural Dynamics of LeuT Using EPR Spectroscopy: A Focus on Transmembrane Helix 10. J Neurochem 2025; 169:e70034. [PMID: 40052253 PMCID: PMC11886772 DOI: 10.1111/jnc.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
The amino-acid transporter LeuT from Aquifex aeolicus is a well-studied bacterial homologue of the neurotransmitter: sodium symporters (NSS), especially the solute carrier 6 (SLC6) family. Within the nervous system, SLC6 transporters play a vital role in the termination of synaptic transmission, and their dysfunction leads to severe neurological conditions, rendering them key pharmacological targets. LeuT was the first SLC6 homologue to be crystallised and remains the main reference transporter to develop transport cycle models for its eukaryotic counterparts. Here, we aim to probe LeuT and investigate mechanistically important conformational changes using a combination of Site-Directed Spin Labelling (SDSL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques in detergent solubilised micelles and proteoliposomes. We focus, primarily, on 'subtle' structural, molecular motions occurring at the extracellular region of transmembrane helix (TM) 10, which cannot be resolved using conventional high-resolution crystallographic techniques. We observe similar but not identical ion/ligand-dependent conformational changes of LeuT on the extracellular domain of TM10 in detergent micelles and proteoliposomes. Close agreement is also observed between in silico analysis of existing static structural models and the experimental data acquired here in the form of coarse-grained accessibility restraints, demonstrating that such subtle movements can be important for understanding both function and mechanism. The observed differences for the dynamics of LeuT in different environments underpin future work, which aims to explore 'more native' reconstituted proteoliposome conditions more thoroughly using pulsed EPR methods before generalised conclusions can be drawn on the physiological relevance of such structural changes and whether they can provide novel insights on the molecular events underlying the transport cycle of LeuT.
Collapse
Affiliation(s)
- Petros Tsalagradas
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Callum Eke
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Courtney Andrews
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| |
Collapse
|
6
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Bakos É, Bujdosó-Székely V, Patik I, Király L, Langó T, Kozák E, Cserepes M, Tóvári J, Özvegy-Laczka C. Cancer-type OATP1B3-V1 is a functional plasma membrane transporter mediating increased uptake of chemotherapeutics in vitro and in vivo. Eur J Pharm Sci 2025; 209:107046. [PMID: 39983930 DOI: 10.1016/j.ejps.2025.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Cancer-type Organic anion transporting polypeptide 1B3, ct-OATP1B3-V1 is a tumor-specific isoform of liver-type OATP1B3 (Lt-OATP1B3). Ct-OATP1B3-V1 is identical with liver-specific Lt-OATP1B3 except it lacks the first 28 amino acids. Although there is a growing interest in using this isoform as a biomarker for colorectal cancer, available data regarding cellular localization and function of ct-OATP1B3-V1 remains controversial. The main objective of our study was to clarify the localization and function of ct-OATP1B3-V1 in vitro and in vivo, and to investigate its role in chemotherapy sensitivity. For this aim, A431 and HCT-8 carcinoma cell lines overexpressing ct-OATP1B3-V1 were generated. With the help of these cell lines, localization and activity of ct-OATP1B3-V1 as well as its effect on chemotherapy sensitivity was examined both in vitro and in vivo. We found that ct-OATP1B3-V1 is a functional plasma membrane transporter that sensitizes the cells toward various chemotherapeutics, including docetaxel, oxaliplatin and capecitabine metabolites in vitro. Increased sensitivity to docetaxel and capecitabine of ct-OATP1B3-V1 expressing cells was also confirmed in in vivo experiments performed on A431-V1 derived xenografts. However, due to the apparent proliferative advantage of V1-expressing xenografts over the mock-transfected control, they could not be completely eradicated by either docetaxel or capecitabine treatment. Our results demonstrate that while ct-OATP1B3-V1 can be exploited to inhibit tumor growth, this strategy alone is likely insufficient for complete tumor elimination, possibly due to the more complex in vivo functions of ct-OATP1B3-V1.
Collapse
Affiliation(s)
- Éva Bakos
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Virág Bujdosó-Székely
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Izabel Patik
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Laura Király
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Tamás Langó
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Eszter Kozák
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Molecular Life Sciences, RCNS, HUN-REN Research Network, H-1117 Budapest, Hungary.
| |
Collapse
|
8
|
Zhang Y, Newstead S, Sarkies P. Predicting substrates for orphan solute carrier proteins using multi-omics datasets. BMC Genomics 2025; 26:130. [PMID: 39930358 PMCID: PMC11812203 DOI: 10.1186/s12864-025-11330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK
| | - S Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - P Sarkies
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK.
| |
Collapse
|
9
|
Quaresima B, Scicchitano S, Faniello MC, Mesuraca M. Role of solute carrier transporters in ovarian cancer (Review). Int J Mol Med 2025; 55:24. [PMID: 39611477 PMCID: PMC11637498 DOI: 10.3892/ijmm.2024.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Solute carrier (SLC) transporters are involved in various biological processes associated with metabolic reprogramming and cancer, supporting the increased requirement of nutrients and energy. Over the past decade, there have been significant advancements in understanding the expression and function of SLCs in ovarian cancer (OC). This gynecological condition has a high mortality rate and limited treatment options; thus, early diagnosis remains a target clinically. OC exhibits complexity and heterogeneity, resulting in different clinical characteristics, resistance to chemotherapy drugs and poor prognosis. Additionally, SLCs have a different expression pattern between healthy and tumor tissue, and consequently, their inhibition or activation could modify signaling pathways involved in the tumor growth process, such as cell proliferation, apoptosis and drug accumulation. The present review aims to consolidate current data to provide a comprehensive understanding of the potential importance of SLCs in OC. Additionally, it seeks to offer guidance for further research on utilizing SLCs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Barbara Quaresima
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | | | - Maria Mesuraca
- Correspondence to: Dr Maria Mesuraca or Dr Barbara Quaresima, Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy, E-mail: , E-mail:
| |
Collapse
|
10
|
Zheng J, Gong J. SLC1A4 Promotes Malignant Transformation of Hepatocellular Carcinoma by Activating the AKT Signaling. Anal Cell Pathol (Amst) 2025; 2025:1115184. [PMID: 39949345 PMCID: PMC11824774 DOI: 10.1155/ancp/1115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 02/16/2025] Open
Abstract
Due to the difficulty in early diagnosis and the lack of treatment for advanced disease, the mortality rate of hepatocellular carcinoma (HCC) is high, and the 5-year overall survival rate is low at present. SLC1A4 is a neutral amino acid transporter, but its regulatory role and mechanism in HCC are still unclear. Through analyzing the TCGA database and clinical tissue specimens, this study uncovered the high expression of SLC1A4 in tumor tissues of HCC. Worse more, a high level of SLC1A4 may lead to a poor prognosis of HCC. Mechanically, silencing SLC1A4 inhibited the phosphorylation activation of AKT by suppressing the ubiquitin modification of AKT at lysine 63 and amino acid influx represented by D-serine, decreasing the protein level of β-catenin in the cell nucleus and suppressing the transcriptional activity of c-Myc and EpCAM promoters. As a result, silencing SLC1A4 inhibited the proliferation, migration, and stemness of hepatic cancer cells, which was successfully reversed by the introduction of exogenous AKT. Moreover, epithelial-mesenchymal transition (EMT) in vitro and metastasis potential in vivo of hepatic cancer cells was suppressed by the downregulated SLC1A4 level. In conclusion, SLC1A4 promotes the malignant transformation of HCC through activating signal transduction mediated by AKT. The findings in this study suggested that SLC1A4 may be a diagnostic indicator for the early HCC and a therapeutic target for the advanced HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Movement/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Male
- Mice
- Mice, Inbred BALB C
- Amino Acid Transport System A/metabolism
- Amino Acid Transport System A/genetics
Collapse
Affiliation(s)
- Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, Hunan, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha 410011, Hunan, China
| |
Collapse
|
11
|
Zhang J, Liu S, Wu M, Shi W, Cai Y. Clinical significance and expression of SLC35F6 in bladder urothelial carcinoma. Diagn Pathol 2024; 19:150. [PMID: 39578844 PMCID: PMC11583552 DOI: 10.1186/s13000-024-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND SLC35F6 negatively regulates outer mitochondrial membrane permeability and positively regulates apoptotic signaling pathways and cell population proliferation. The biological function of SLC35F6 in bladder cancer (BC) remains inadequately established. This study evaluates the expression and clinical significance of SLC35F6 in BC, assesses its prognostic value and explores its relationship with key immune-related molecules in the tumor microenvironment. METHODS Combining bioinformatics tools and immunohistochemistry (IHC) analysis, the expression of SLC35F6 was analyzed through IHC in the tissues of 145 BC patients treated at the Affiliated Hospital of Nantong University from 2004 to 2009. The relationship between SLC35F6 expression levels and significant clinicopathological factors was examined using the chi-square test. Prognostic values were analyzed using the COX regression model and the Kaplan-Meier survival curve. Analysis of the receiver operating characteristic curve was conducted to assess the predictive performance of SLC35F6 in BC patients. RESULTS The expression levels of both SLC35F6 mRNA and protein were elevated in BC tissue relative to benign tissue. Kaplan-Meier analysis indicated that patients exhibiting elevated SLC35F6 protein expression had a worse prognosis. Multivariate Cox regression analysis confirmed that SLC35F6, TNM stage and grade are independent risk factors for bladder cancer. SLC35F6, when analyzed alongside clinical pathological factors, enhances the accuracy of survival predictions for Bladder Urothelial Carcinoma (BLCA) patients. CONCLUSION SLC35F6 is upregulated in BC patients compared to normal individuals and is linked to a worse prognosis. SLC35F6 analyzed alongside clinical pathological factors can enhance the accuracy of survival predictions for BLCA patients, suggesting its potential value as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Clinical and Translational Research Center, Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Siqi Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Meng Wu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yihong Cai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
12
|
Farr CV, Xiao Y, El-Kasaby A, Schupp M, Hotka M, di Mauro G, Clarke A, Pastor Fernandez M, Sandtner W, Stockner T, Klade C, Maulide N, Freissmuth M. Probing the Chemical Space of Guanidino-Carboxylic Acids to Identify the First Blockers of the Creatine-Transporter-1. Mol Pharmacol 2024; 106:319-333. [PMID: 39322412 DOI: 10.1124/molpharm.124.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The creatine transporter-1 (CRT-1/SLC6A8) maintains the uphill transport of creatine into cells against a steep concentration gradient. Cellular creatine accumulation is required to support the ATP-buffering by phosphocreatine. More than 60 compounds have been explored in the past for their ability to inhibit cellular creatine uptake, but the number of active compounds is very limited. Here, we show that all currently known inhibitors are full alternative substrates. We analyzed their structure-activity relationship for inhibition of CRT-1 to guide a rational approach to the synthesis of novel creatine transporter ligands. Measurements of both inhibition of [3H]creatine uptake and transport associated currents allowed for differentiating between full and partial substrates and true inhibitors. This combined approach led to a refined understanding of the structural requirements for binding to CRT-1, which translated into the identification of three novel compounds - i.e., compound 1 (2-(N-benzylcarbamimidamido)acetic acid), MIPA572 (=carbamimidoylphenylalanine), and MIPA573 (=carbamimidoyltryptophane) that blocked CRT-1 transport, albeit with low affinity. In addition, we found two new alternative full substrates, namely MIPA574 (carbamimidoylalanine) and GiDi1257 (1-carbamimidoylazetidine-3-carboxylic acid), which was superior in affinity to all known CTR-1 ligands, and one partial substrate, namely GiDi1254 (1-carbamimidoylpiperidine-4-carboxylic acid). SIGNIFICANCE STATEMENT: The creatine transporter-1 (CRT-1) is required to maintain intracellular creatine levels. Inhibition of CRT-1 has been recently proposed as a therapeutic strategy for cancer, but pharmacological tools are scarce. In fact, all available inhibitors are alternative substrates. We tested existing and newly synthesized guanidinocarboxylic acids for CRT-1 inhibition and identified three blockers, one partial and two full substrates of CRT-1. Our results support a refined structural understanding of ligand binding to CRT-1 and provide a proof-of-principle for blockage of CRT-1.
Collapse
Affiliation(s)
- Clemens V Farr
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Yi Xiao
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Manuel Schupp
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Matej Hotka
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Giovanni di Mauro
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Amy Clarke
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Miryam Pastor Fernandez
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Christoph Klade
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Nuno Maulide
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| |
Collapse
|
13
|
Kamynina M, Rozenberg JM, Kushchenko AS, Dmitriev SE, Modestov A, Kamashev D, Gaifullin N, Shaban N, Suntsova M, Emelianova A, Buzdin AA. Forced Overexpression and Knockout Analysis of SLC30A and SLC39A Family Genes Suggests Their Involvement in Establishing Resistance to Cisplatin in Human Cancer Cells. Int J Mol Sci 2024; 25:12049. [PMID: 39596116 PMCID: PMC11594112 DOI: 10.3390/ijms252212049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The metabolism of zinc and manganese plays a pivotal role in cancer progression by mediating cancer cell growth and metastasis. The SLC30A family proteins SLC30A3 and SLC30A10 mediate the efflux of zinc, manganese, and probably other transition element ions outside the cytoplasm to the extracellular space or into intracellular membrane compartments. The SLC39A family members SLC39A8 and SLC39A14 are their functional antagonists that transfer these ions into the cytoplasm. Recently, the SLC30A10 gene was suggested as a promising methylation biomarker of colorectal cancer. Here, we investigated whether forced overexpression or inactivation of SLC30A and SLC39A family genes has an impact on the phenotype of cancer cells and their sensitivity to cancer therapeutics. In the human colon adenocarcinoma HCT-15 and duodenal adenocarcinoma HuTu80 cell lines, we generated clones with knockouts of the SLC39A8 and SLC39A14 genes and forced overexpression of the SLC30A3, SLC30A10, and SLC39A8 genes. Gene expression in the mutant and control cells was assessed by RNA sequencing. The cell growth rate, mitochondrial activity, zinc accumulation, and sensitivity to the drugs cetuximab and cisplatin were investigated in functional tests. Overexpression or depletion of SLC30A or SLC39A family genes resulted in the deep reshaping of intracellular signaling and provoked hyperactivation of mitochondrial respiration. Variation in the expression of the SLC30A/SLC39A genes did not increase the sensitivity to cetuximab but significantly altered the sensitivity to cisplatin: overexpression of SLC30A10 resulted in an ~2.7-4 times increased IC50 of cisplatin, and overexpression of SLC30A3 resulted in an ~3.3 times decreased IC50 of cisplatin. The SLC30A/SLC39A genes should be considered as potential cancer drug resistance biomarkers and putative therapeutic targets.
Collapse
Affiliation(s)
- Margarita Kamynina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | | | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Aleksander Modestov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Dmitry Kamashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nurshat Gaifullin
- Faculty of Fundamental Medicine, Moscow State University, 119992 Moscow, Russia;
| | - Nina Shaban
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anna Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anton A. Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
14
|
Gertsch J, Chicca A. CNS Drug Discovery in Academia: Where Basic Research Meets Innovation. Chembiochem 2024; 25:e202400397. [PMID: 38958639 DOI: 10.1002/cbic.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
The involvement of academic research in drug discovery is consistently growing. However, academic projects seldom advance to clinical trials. Here, we assess the landscape of drug discovery within the National Centre of Competence in Research (NCCR) TransCure launched by the Swiss National Science Foundation to foster basic research and early-stage drug discovery on membrane transporters. This included transporters in central nervous system (CNS) disorders, which represent a huge unmet medical need. While idea championship, sustainable funding, collaborations between disciplines at the interface of academia and industry are important for translational research, Popperian falsifiability, strong intellectual property and a motivated startup team are key elements for innovation. This is exemplified by the NCCR TransCure spin-off company Synendos Therapeutics, a clinical stage biotech company developing the first selective endocannabinoid reuptake inhibitors (SERIs) as novel treatment for neuropsychiatric disorders. We provide a perspective on the challenges related to entering an uncharted druggable space and bridging the often mentioned "valley of death". The high attrition rate of drug discovery projects in the CNS field within academia is often due to the lack of meaningful animal models that can provide pharmacological proof-of-concept for potentially disruptive technologies at the earliest stages, and the absence of solid intellectual property.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
- Synendos Therapeutics, Barfüsserplatz, 3, 4051, Basel, Switzerland
| |
Collapse
|
15
|
Viswanatha R, Entwisle S, Hu C, Reap K, Butnaru M, Mohr SE, Perrimon N. Higher resolution pooled genome-wide CRISPR knockout screening in Drosophila cells using Integration and Anti-CRISPR (IntAC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613976. [PMID: 39345359 PMCID: PMC11429967 DOI: 10.1101/2024.09.19.613976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
CRISPR screens enable systematic, scalable genotype-to-phenotype mapping. We previously developed a pooled CRISPR screening method for Drosophila melanogaster and mosquito cell lines using plasmid transfection and site-specific integration to introduce single guide (sgRNA) libraries, followed by PCR and sequencing of integrated sgRNAs. While effective, the method relies on early constitutive Cas9 activity that potentially can lead to discrepancies between genome edits and sgRNAs detected by PCR, reducing screen accuracy. To address this issue, we introduce a new method to co-transfect a plasmid expressing the anti-CRISPR protein AcrIIa4 to suppress Cas9 activity during early sgRNA expression, which we term "IntAC" (integrase with anti-CRISPR). IntAC allowed us to construct a new CRISPR screening approach driven by the high strength dU6:3 promoter. This new library dramatically improved precision-recall of fitness genes across the genome, retrieving 90-95% of essential gene groups within 5% error, allowing us to generate the most comprehensive list of cell fitness genes yet assembled for Drosophila. Our analysis determined that elevated sgRNA levels, made permissible by the IntAC approach, drove much of the improvement. The Drosophila fitness genes show strong correlation with human fitness genes and underscore the effects of paralogs on gene essentiality. We further demonstrate that IntAC combined with a targeted sgRNA sub-library enabled precise positive selection of a transporter under solute overload. IntAC represents a straightforward enhancement to existing Drosophila CRISPR screening methods, dramatically increasing accuracy, and might also be broadly applicable to virus-free CRISPR screens in other cell types, including mosquito, lepidopteran, tick, and mammalian cells.
Collapse
Affiliation(s)
| | - Samuel Entwisle
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Claire Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Kelly Reap
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Matthew Butnaru
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
16
|
Cho SY, Kang NS. The Solute Carrier (SLC) Transporter Superfamily as Therapeutic Targets for the Treatment of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3226. [PMID: 39335197 PMCID: PMC11430461 DOI: 10.3390/cancers16183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSC) is the most prevalent cancer in the head and neck region, originating from the mucosal epithelium of the oral cavity, pharynx, and larynx. The solute carrier (SLC) transporter superfamily, consisting of over 400 proteins across 65 families, plays a crucial role in cellular functions and presents promising targets in precision oncology. This study aims to analyze the expression of SLC transporters in HNSC and their potential as biomarkers and therapeutic targets. Methods: We leveraged mRNA and protein expression data from The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (HPA) to examine SLC transporter expression in HNSC. Gene Set Enrichment Analysis (GSEA) was conducted to assess the involvement of SLC transporters in various oncogenic pathways. Results: Significant upregulation of SLC transporters was observed in tumor tissues compared to normal tissues, with notable increases in SLC16A3, SLC53A1, SLC25A32, and SLC2A3. This upregulation correlated with poorer overall survival (OS) and disease-specific survival (DSS). GSEA revealed that these transporters are significantly involved in critical oncogenic pathways, including epithelial-mesenchymal transition (EMT), angiogenesis, and hypoxia, which are vital for cancer progression and metastasis. Conclusions: The study identifies SLC transporters as potential biomarkers and therapeutic targets in HNSC. Targeting these transporters with small molecule inhibitors could disrupt essential supply routes for cancer cells, enhancing treatment efficacy and improving patient outcomes. This study paves the way for developing SLC-based target therapies in precision oncology, with the goal of improving survival rates for patients with HNSC.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
- CHOMEDICINE Inc., TIPS Town, Chungnam National University, Daejeon 34135, Republic of Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
17
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
18
|
Kuhn BT, Zöller J, Zimmermann I, Gemeinhardt T, Özkul DH, Langer JD, Seeger MA, Geertsma ER. Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA. Nat Commun 2024; 15:7518. [PMID: 39209842 PMCID: PMC11362169 DOI: 10.1038/s41467-024-51814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Uptake of nucleobases and ascorbate is an essential process in all living organisms mediated by SLC23 transport proteins. These transmembrane carriers operate via the elevator alternating-access mechanism, and are composed of two rigid domains whose relative motion drives transport. The lack of large conformational changes within these domains suggests that the interdomain-linkers act as flexible tethers. Here, we show that interdomain-linkers are not mere tethers, but have a key regulatory role in dictating the conformational space of the transporter and defining the rotation axis of the mobile transport domain. By resolving a wide inward-open conformation of the SLC23 elevator transporter UraA and combining biochemical studies using a synthetic nanobody as conformational probe with hydrogen-deuterium exchange mass spectrometry, we demonstrate that interdomain-linkers control the function of transport proteins by influencing substrate affinity and transport rate. These findings open the possibility to allosterically modulate the activity of elevator proteins by targeting their linkers.
Collapse
Affiliation(s)
- Benedikt T Kuhn
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Zöller
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tim Gemeinhardt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dogukan H Özkul
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
19
|
Uchimura Y, Hino K, Hattori K, Kubo Y, Owada A, Kimura T, Sugawara L, Kume S, Bellier JP, Yanagisawa D, Shiino A, Nakayama T, Daigo Y, Mashimo T, Udagawa J. Knockout of the orphan membrane transporter Slc22a23 leads to a lean and hyperactive phenotype with a small hippocampal volume. PLoS One 2024; 19:e0309461. [PMID: 39197039 PMCID: PMC11356391 DOI: 10.1371/journal.pone.0309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy predisposes offspring to the development of lifestyle-related noncommunicable diseases and psychiatric disorders later in life. However, the molecular mechanisms underlying this predisposition are not well understood. In our previous study, using rats as model animals, we showed that behavioral impairments are induced by prenatal undernutrition. In this study, we identified solute carrier 22 family member 23 (Slc22a23) as a gene that is irreversibly upregulated in the rat brain by undernutrition during fetal development. Because the substrate of the SLC22A23 transporter has not yet been identified and the biological role of the Slc22a23 gene in vivo is not fully understood, we generated pan-Slc22a23 knockout rats and examined their phenotype in detail. The Slc22a23 knockout rats showed a lean phenotype, an increase in spontaneous locomotion, and improved endurance, indicating that they are not overweight and are even healthier in an ad libitum feeding environment. However, the knockout rats had reduced hippocampal volume, and the behavioral analysis suggested that they may have impaired cognitive function regarding novel objects.
Collapse
Affiliation(s)
- Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Airi Owada
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoko Kimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lucia Sugawara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akihiko Shiino
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takahisa Nakayama
- Division of Human Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology, Cancer Center and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
20
|
Gelová Z, Ingles-Prieto A, Bohstedt T, Frommelt F, Chi G, Chang YN, Garcia J, Wolf G, Azzollini L, Tremolada S, Scacioc A, Hansen JS, Serrano I, Droce A, Bernal JC, Burgess-Brown NA, Carpenter EP, Dürr KL, Kristensen P, Geertsma ER, Štefanić S, Scarabottolo L, Wiedmer T, Puetter V, Sauer DB, Superti-Furga G. Protein Binder Toolbox for Studies of Solute Carrier Transporters. J Mol Biol 2024; 436:168665. [PMID: 38878854 DOI: 10.1016/j.jmb.2024.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.
Collapse
Affiliation(s)
- Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesper S Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Eschikon, Switzerland
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Khan A, Unlu G, Lin P, Liu Y, Kilic E, Kenny TC, Birsoy K, Gamazon ER. Metabolic gene function discovery platform GeneMAP identifies SLC25A48 as necessary for mitochondrial choline import. Nat Genet 2024; 56:1614-1623. [PMID: 38977856 PMCID: PMC11887816 DOI: 10.1038/s41588-024-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Organisms maintain metabolic homeostasis through the combined functions of small-molecule transporters and enzymes. While many metabolic components have been well established, a substantial number remains without identified physiological substrates. To bridge this gap, we have leveraged large-scale plasma metabolome genome-wide association studies (GWAS) to develop a multiomic Gene-Metabolite Association Prediction (GeneMAP) discovery platform. GeneMAP can generate accurate predictions and even pinpoint genes that are distant from the variants implicated by GWAS. In particular, our analysis identified solute carrier family 25 member 48 (SLC25A48) as a genetic determinant of plasma choline levels. Mechanistically, SLC25A48 loss strongly impairs mitochondrial choline import and synthesis of its downstream metabolite betaine. Integrative rare variant and polygenic score analyses in UK Biobank provide strong evidence that the SLC25A48 causal effects on human disease may in part be mediated by the effects of choline. Altogether, our study provides a discovery platform for metabolic gene function and proposes SLC25A48 as a mitochondrial choline transporter.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Phillip Lin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ece Kilic
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
23
|
GeneMAP enables discovery of metabolic gene function. Nat Genet 2024; 56:1552-1553. [PMID: 38992149 DOI: 10.1038/s41588-024-01828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
|
24
|
Im JW, Lim JH, Stonik VA, Kwak JY, Jin S, Son M, Bae HR. Stichoposide C and Rhizochalin as Potential Aquaglyceroporin Modulators. Mar Drugs 2024; 22:335. [PMID: 39195451 DOI: 10.3390/md22080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are a family of integral membrane proteins that selectively transport water and glycerol across the cell membrane. Because AQPs are involved in a wide range of physiological functions and pathophysiological conditions, AQP-based therapeutics may have the broad potential for clinical utility, including for disorders of water and energy balance. However, AQP modulators have not yet been developed as suitable candidates for clinical applications. In this study, to identify potential modulators of AQPs, we screened 31 natural products by measuring the water and glycerol permeability of mouse erythrocyte membranes using a stopped-flow light scattering method. None of the tested natural compounds substantially affected the osmotic water permeability. However, several compounds considerably affected the glycerol permeability. Stichoposide C increased the glycerol permeability of mouse erythrocyte membranes, whereas rhizochalin decreased it at nanomolar concentrations. Immunohistochemistry revealed that AQP7 was the main aquaglyceroporin in mouse erythrocyte membranes. We further verified the effects of stichoposide C and rhizochalin on aquaglyceroporins using human AQP3-expressing keratinocyte cells. Stichoposide C, but not stichoposide D, increased AQP3-mediated transepithelial glycerol transport, whereas the peracetyl aglycon of rhizochalin was the most potent inhibitor of glycerol transport among the tested rhizochalin derivatives. Collectively, stichoposide C and the peracetyl aglycon of rhizochalin might function as modulators of AQP3 and AQP7, and suggests the possibility of these natural products as potential drug candidates for aquaglyceroporin modulators.
Collapse
Affiliation(s)
- Ji Woo Im
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Ju Hyun Lim
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Tech University of Korea, Siheung-si 15073, Gyeonggi-do, Republic of Korea
| | - Minkook Son
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Hae-Rahn Bae
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| |
Collapse
|
25
|
Tsizin S, Ban L, Chasovskikh E, Yoder BL, Signorell R. Valence photoelectron imaging of molecular oxybenzone. Phys Chem Chem Phys 2024; 26:19236-19246. [PMID: 38957915 PMCID: PMC11253247 DOI: 10.1039/d3cp06224d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
An oxybenzone molecule in the gas phase was characterized by mass spectrometry and angle-resolved photoelectron spectroscopy, using both single and multiphoton ionization schemes. A tabletop high harmonic generation source with a monochromator was used for single-photon ionization of oxybenzone with photon energies of up to 35.7 eV. From this, vertical ionization and appearance energies, as well as energy-dependent anisotropy parameters were retrieved and compared with the results from DFT calculations. For two-photon ionization using 4.7 eV light, we found a higher appearance energy than in the extreme ultraviolet (EUV) case, highlighting the possible influence of an intermediate state on the photoionization process. We found no differences in the mass spectra when ionizing oxybenzone by single-photons between 17.2 and 35.7 eV. However, for the multiphoton ionization, the fragmentation process was found to be sensitive to the photoionization order and laser intensity. The "softest" method was found to be two-photon ionization using 4.7 eV light, which led to no measurable fragmentation up to an intensity of 5 × 1012 W cm-2.
Collapse
Affiliation(s)
- Svetlana Tsizin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Egor Chasovskikh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Theron CW, Salcedo-Sora JE, Grixti JM, Møller-Hansen I, Borodina I, Kell DB. Evidence for the Role of the Mitochondrial ABC Transporter MDL1 in the Uptake of Clozapine and Related Molecules into the Yeast Saccharomyces cerevisiae. Pharmaceuticals (Basel) 2024; 17:938. [PMID: 39065789 PMCID: PMC11279418 DOI: 10.3390/ph17070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.
Collapse
Affiliation(s)
- Chrispian W. Theron
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - J. Enrique Salcedo-Sora
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Justine M. Grixti
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Douglas B. Kell
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Digles D, Ingles-Prieto A, Dvorak V, Mocking TAM, Goldmann U, Garofoli A, Homan EJ, Di Silvio A, Azzollini L, Sassone F, Fogazza M, Bärenz F, Pommereau A, Zuschlag Y, Ooms JF, Tranberg-Jensen J, Hansen JS, Stanka J, Sijben HJ, Batoulis H, Bender E, Martini R, IJzerman AP, Sauer DB, Heitman LH, Manolova V, Reinhardt J, Ehrmann A, Leippe P, Ecker GF, Huber KVM, Licher T, Scarabottolo L, Wiedmer T, Superti-Furga G. Advancing drug discovery through assay development: a survey of tool compounds within the human solute carrier superfamily. Front Pharmacol 2024; 15:1401599. [PMID: 39050757 PMCID: PMC11267547 DOI: 10.3389/fphar.2024.1401599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce. Additionally, many small molecules reported in the literature to target SLCs are poorly characterized. Both features may be due to the difficulty of developing SLC transport assays that fulfill the quality criteria for high-throughput screening. Here, we report one of the main limitations hampering assay development within the RESOLUTE consortium: the lack of a resource providing high-quality information on SLC tool compounds. To address this, we provide a systematic annotation of tool compounds targeting SLCs. We first provide an overview on RESOLUTE assays. Next, we present a list of SLC-targeting compounds collected from the literature and public databases; we found that most data sources lacked specificity data. Finally, we report on experimental tests of 19 selected compounds against a panel of 13 SLCs from seven different families. Except for a few inhibitors, which were active on unrelated SLCs, the tested inhibitors demonstrated high selectivity for their reported targets. To make this knowledge easily accessible to the scientific community, we created an interactive dashboard displaying the collected data in the RESOLUTE web portal (https://re-solute.eu). We anticipate that our open-access resources on assays and compounds will support the development of future drug discovery campaigns for SLCs.
Collapse
Affiliation(s)
- Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tamara A. M. Mocking
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Garofoli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Evert J. Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Yasmin Zuschlag
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Jasper F. Ooms
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Jeppe Tranberg-Jensen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jesper S. Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Josefina Stanka
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Helena Batoulis
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Eckhard Bender
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Riccardo Martini
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - David B. Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | - Alexander Ehrmann
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Adla SK, Virtanen H, Thongsodsaeng T, Huttunen KM. Amino acid transporters in neurological disorders and neuroprotective effects of cysteine derivatives. Neurochem Int 2024; 177:105771. [PMID: 38761853 DOI: 10.1016/j.neuint.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
For most diseases and disorders occurring in the brain, the full causes behind them are yet unknown, but many show signs of dysfunction of amino acid transporters or abnormalities in amino acid metabolism. The blood-brain barrier (BBB) plays a key role in supporting the function of the central nervous system (CNS). Because of its unique structure, the BBB can maintain the optimal environment for CNS by controlling the passage of hydrophilic molecules from blood to the brain. Nutrients, such as amino acids, can cross the BBB via specific transporters. Many amino acids are essential for CNS function, and dysfunction of these amino acid transporters can lead to abnormalities in amino acid levels. This has been linked to causes behind certain genetic brain diseases, such as schizophrenia, autism spectrum disorder, and Huntington's disease (HD). One example of crucial amino acids is L-Cys, the rate-limiting factor in the biosynthesis of an important antioxidant, glutathione (GSH). Deficiency of L-Cys and GSH has been linked to oxidative stress and has been shown as a plausible cause behind certain CNS diseases, like schizophrenia and HD. This review presents the current status of potential L-Cys therapies and gives future directions that can be taken to improve amino acid transportation related to distinct CNS diseases.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Heinileena Virtanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Thanavit Thongsodsaeng
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
29
|
El-Kasaby A, Boytsov D, Kasture A, Krumpl G, Hummel T, Freissmuth M, Sandtner W. Allosteric Inhibition and Pharmacochaperoning of the Serotonin Transporter by the Antidepressant Drugs Trazodone and Nefazodone. Mol Pharmacol 2024; 106:56-70. [PMID: 38769018 DOI: 10.1124/molpharm.124.000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The antidepressants trazodone and nefazodone were approved some 4 and 3 decades ago, respectively. Their action is thought to be mediated, at least in part, by inhibition of the serotonin transporter [SERT/solute carrier (SLC)-6A4]. Surprisingly, their mode of action on SERT has not been characterized. Here, we show that, similar to the chemically related drug vilazodone, trazodone and nefazodone are allosteric ligands: trazodone and nefazodone inhibit uptake by and transport-associated currents through SERT in a mixed-competitive and noncompetitive manner, respectively. Contrary to noribogaine and its congeners, all three compounds preferentially interact with the Na+-bound outward-facing state of SERT. Nevertheless, they act as pharmacochaperones and rescue the folding-deficient variant SERT-P601A/G602A. The vast majority of disease-associated point mutations of SLC6 family members impair folding of the encoded transporter proteins. Our findings indicate that their folding defect can be remedied by targeting allosteric sites on SLC6 transporters. SIGNIFICANCE STATEMENT: The serotonin transporter is a member of the solute carrier-6 family and is the target of numerous antidepressants. Trazodone and nefazodone have long been used as antidepressants. Here, this study shows that their inhibition of the serotonin transporter digressed from the competitive mode seen with other antidepressants. Trazodone and nefazodone rescued a folding-deficient variant of the serotonin transporter. This finding demonstrates that folding defects of mutated solute carrier-6 family members can also be corrected by allosteric ligands.
Collapse
Affiliation(s)
- Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Danila Boytsov
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Ameya Kasture
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Günther Krumpl
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Thomas Hummel
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology (A.E.-K., D.B., M.F., W.S.), Medical University of Vienna, Vienna, Austria; Department of Neurobiology, University of Vienna, Vienna, Austria (A.K., T.H.); and MRN Medical Research Network GmbH, Vienna, Austria (G.K.)
| |
Collapse
|
30
|
Bhatt M, Lazzarin E, Alberto-Silva AS, Domingo G, Zerlotti R, Gradisch R, Bazzone A, Sitte HH, Stockner T, Bossi E. Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1). Cell Mol Life Sci 2024; 81:269. [PMID: 38884791 PMCID: PMC11335192 DOI: 10.1007/s00018-024-05309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K0.5. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Guido Domingo
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Rocco Zerlotti
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Ralph Gradisch
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Bossi
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
- Centre for Neuroscience, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
31
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
32
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
33
|
Zhang D, Ma B, Dragovich PS, Ma L, Chen S, Chen EC, Ye X, Liu J, Pizzano J, Bortolon E, Chan E, Zhang X, Chen YC, Levy ES, Yauch RL, Khojasteh SC, Hop CECA. Tissue distribution and retention drives efficacy of rapidly clearing VHL-based PROTACs. COMMUNICATIONS MEDICINE 2024; 4:87. [PMID: 38755248 PMCID: PMC11099041 DOI: 10.1038/s43856-024-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Proteolysis-targeting chimeras (PROTACs) are being developed for therapeutic use. However, they have poor pharmacokinetic profiles and their tissue distribution kinetics are not known. METHODS A typical von Hippel-Lindau tumor suppressor (VHL)-PROTAC 14C-A947 (BRM degrader)-was synthesized and its tissue distribution kinetics was studied by quantitative whole-body autoradiography (QWBA) and tissue excision in rats following IV dosing. Bile duct-cannulated (BDC) rats allowed the elucidation of in vivo clearance pathways. Distribution kinetics was evaluated in the tissues and tumors of mice to support PK-PD correlation. In vitro studies enabled the evaluation of cell uptake mechanisms and cell retention properties. RESULTS Here, we show that A947 quickly distributes into rat tissues after IV dosing, where it accumulates and is retained in tissues such as the lung and liver although it undergoes fast clearance from circulation. Similar uptake/retention kinetics enable tumor growth inhibition over 2-3 weeks in a lung cancer model. A947 quickly excretes in the bile of rats. Solute carrier (SLC) transporters are involved in hepatocyte uptake of PROTACs. Sustained BRM protein degradation is seen after extensive washout that supports prolonged cell retention of A947 in NCI-H1944 cells. A947 tissue exposure and pharmacodynamics are inversely correlated in tumors. CONCLUSIONS Plasma sampling for VHL-PROTAC does not represent the tissue concentrations necessary for efficacy. Understanding of tissue uptake and retention could enable less frequent IV administration to be used for therapeutic dosing.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Bin Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Li Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shu Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eugene C Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaofen Ye
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Liu
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer Pizzano
- Arvinas; 5 Science Park, 395 Winchester Ave, New Haven, CT, 06511, USA
| | | | - Emily Chan
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xing Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yi-Chen Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Robert L Yauch
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | |
Collapse
|
34
|
Handa K, Yoshimura S, Kageyama M, Iijima T. Development of Novel Methods for QSAR Modeling by Machine Learning Repeatedly: A Case Study on Drug Distribution to Each Tissue. J Chem Inf Model 2024; 64:3662-3669. [PMID: 38639496 DOI: 10.1021/acs.jcim.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Artificial intelligence is expected to help identify excellent candidates in drug discovery. However, we face a lack of data, as it is time-consuming and expensive to acquire raw data perfectly for many compounds. Hence, we tried to develop a novel quantitative structure-activity relationship (QSAR) method to predict a parameter more precisely from an incomplete data set via optimizing data handling by making use of predicted explanatory variables. As a case study we focused on the tissue-to-plasma partition coefficient (Kp), which is an important parameter for understanding drug distribution in tissues and building the physiologically based pharmacokinetic model and is a representative of small and sparse data sets. In this study, we predicted the Kp values of 119 compounds in nine tissues (adipose, brain, gut, heart, kidney, liver, lung, muscle, and skin), although some of these were not available. To fill the missing values in Kp for each tissue, first we predicted those Kp values by the nonmissing data set using a random forest (RF) model with in vitro parameters (log P, fu, Drug Class, and fi) like a classical prediction by a QSAR model. Next, to predict the tissue-specific Kp values in a test data set, we constructed a second RF model with not only in vitro parameters but also the Kp values of other tissues (i.e., other than target tissues) predicted by the first RF model as explanatory variables. Furthermore, we tested all possible combinations of explanatory variables and selected the model with the highest predictability from the test data set as the final model. The evaluation of Kp prediction accuracy based on the root-mean-square error and R2 value revealed that the proposed models outperformed other machine learning methods such as the conventional RF and message-passing neural networks. Significant improvements were observed in the Kp values of adipose tissue, brain, kidney, liver, and skin. These improvements indicated that the Kp information on other tissues can be used to predict the same for a specific tissue. Additionally, we found a novel relationship between each tissue by evaluating all combinations of explanatory variables. In conclusion, we developed a novel RF model to predict Kp values. We hope that this method will be applied to various problems in the field of experimental biology which often contains missing values in the near future.
Collapse
Affiliation(s)
- Koichi Handa
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Saki Yoshimura
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Michiharu Kageyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takeshi Iijima
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
35
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
36
|
Wu W, Jiang C, Zhu W, Jiang X. Multi-omics analysis reveals the association between specific solute carrier proteins gene expression patterns and the immune suppressive microenvironment in glioma. J Cell Mol Med 2024; 28:e18339. [PMID: 38687049 PMCID: PMC11060081 DOI: 10.1111/jcmm.18339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Glioma is the most prevalent malignant brain tumour. Currently, reshaping its tumour microenvironment has emerged as an appealing strategy to enhance therapeutic efficacy. As the largest group of transmembrane transport proteins, solute carrier proteins (SLCs) are responsible for the transmembrane transport of various metabolites and ions. They play a crucial role in regulating the metabolism and functions of malignant cells and immune cells within the tumour microenvironment, making them a promising target in cancer therapy. Through multidimensional data analysis and experimental validation, we investigated the genetic landscape of SLCs in glioma. We established a classification system comprising 7-SLCs to predict the prognosis of glioma patients and their potential responses to immunotherapy and chemotherapy. Our findings unveiled specific SLC expression patterns and their correlation with the immune-suppressive microenvironment and metabolic status. The 7-SLC classification system was validated in distinguishing subgroups within the microenvironment, specifically identifying subsets involving malignant cells and tumour-associated macrophages. Furthermore, the orphan protein SLC43A3, a core member of the 7-SLC classification system, was identified as a key facilitator of tumour cell proliferation and migration, suggesting its potential as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wende Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
37
|
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, Sorger PK. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol 2024; 26:825-838. [PMID: 38605144 PMCID: PMC11098743 DOI: 10.1038/s41556-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
Collapse
Affiliation(s)
- Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin L Gaudio
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 2024; 384:eadk5864. [PMID: 38662832 DOI: 10.1126/science.adk5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Collapse
Affiliation(s)
- Fabian Offensperger
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Miquel Duran-Frigola
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ersilia Open Source Initiative, Cambridge CB1 3DE, UK
| | - Elisa Hahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Andrea Rukavina
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenth Brennsteiner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kevin Ogilvie
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Nara Marella
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katharina Kladnik
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Rodolfo Ciuffa
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Evandro Ferrada
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Amanda Ng
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Zhechun Zhang
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - Gianluca Degliesposti
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Robert Stanton
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - André C Müller
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Georg E Winter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
39
|
Cao T, Zhang W, Wang Q, Wang C, Ma W, Zhang C, Ge M, Tian M, Yu J, Jiao A, Wang L, Liu M, Wang P, Guo Z, Zhou Y, Chen S, Yin W, Yi J, Guo H, Han H, Zhang B, Wu K, Fan D, Wang X, Nie Y, Lu Y, Zhao X. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8 + T cells. Cell 2024; 187:2288-2304.e27. [PMID: 38565142 DOI: 10.1016/j.cell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chen Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wanqi Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Minghui Ge
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Miaomiao Tian
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Yu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liang Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Manjiao Liu
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Pei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiyu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Shuyi Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen Yin
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Yi
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guo
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
40
|
Song K, Zhang L, Fu X, Li L, Zhu G, Wu M, Zhang W, He J, Zhu S, Dang Y, Liu JY, Chen C, Guo Z. A rapid and simple non-radioactive assay for measuring uptake by solute carrier transporters. Front Pharmacol 2024; 15:1355507. [PMID: 38720778 PMCID: PMC11076738 DOI: 10.3389/fphar.2024.1355507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Solute carrier (SLC) transport proteins play a crucial role in maintaining cellular nutrient and metabolite homeostasis and are implicated in various human diseases, making them potential targets for therapeutic interventions. However, the study of SLCs has been limited due to the lack of suitable tools, particularly cell-based substrate uptake assays, necessary for understanding their biological functions and for drug discovery purposes. Methods: In this study, a cell-based uptake assay was developed using a stable isotope-labeled compound as the substrate for SLCs, with detection facilitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay aimed to address the limitations of existing assays, such as reliance on hazardous radiolabeled substrates and limited availability of fluorescent biosensors. Results: The developed assay was successfully applied to detect substrate uptakes by two specific SLCs: L-type amino acid transporter 1 (LAT1) and sodium taurocholate co-transporting polypeptide (NTCP). Importantly, the assay demonstrated comparable results to the radioactive method, indicating its reliability and accuracy. Furthermore, the assay was utilized to screen for novel inhibitors of NTCP, leading to the identification of a potential NTCP inhibitor compound. Discussion: The findings highlight the utility of the developed cell-based uptake assay as a rapid, simple, and environmentally friendly tool for investigating SLCs' biological roles and for drug discovery purposes. This assay offers a safer alternative to traditional methods and has the potential to contribute significantly to advancing our understanding of SLC function and identifying therapeutic agents targeting SLC-mediated pathways.
Collapse
Affiliation(s)
- Kunling Song
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Longbin Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian Fu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Anesthesiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Linfeng Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gaolin Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jia He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sanyong Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Anesthesiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Wiriyasermkul P, Moriyama S, Suzuki M, Kongpracha P, Nakamae N, Takeshita S, Tanaka Y, Matsuda A, Miyasaka M, Hamase K, Kimura T, Mita M, Sasabe J, Nagamori S. <sc>A</sc> multi-hierarchical approach reveals <sc>d</sc>-serine as a hidden substrate of sodium-coupled monocarboxylate transporters. eLife 2024; 12:RP92615. [PMID: 38650461 PMCID: PMC11037918 DOI: 10.7554/elife.92615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Satomi Moriyama
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Masataka Suzuki
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Pornparn Kongpracha
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Nodoka Nakamae
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Saki Takeshita
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Yoko Tanaka
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Akina Matsuda
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Masaki Miyasaka
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Tomonori Kimura
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Reverse Translational Research Project, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
| | | | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| |
Collapse
|
42
|
Møller-Hansen I, Sáez-Sáez J, van der Hoek SA, Dyekjær JD, Christensen HB, Wright Muelas M, O’Hagan S, Kell DB, Borodina I. Deorphanizing solute carriers in Saccharomyces cerevisiae for secondary uptake of xenobiotic compounds. Front Microbiol 2024; 15:1376653. [PMID: 38680917 PMCID: PMC11045925 DOI: 10.3389/fmicb.2024.1376653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).
Collapse
Affiliation(s)
- Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jane D. Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne B. Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Steve O’Hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
43
|
Wang S, Wang L, Qiu M, Lin Z, Qi W, Lv J, Wang Y, Lu Y, Li X, Chen W, Qiu W. Constructing and validating a risk model based on neutrophil-related genes for evaluating prognosis and guiding immunotherapy in colon cancer. J Gene Med 2024; 26:e3684. [PMID: 38618694 DOI: 10.1002/jgm.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Colon cancer is one of the most common digestive tract malignancies. Although immunotherapy has brought new hope to colon cancer patients, there is still a large proportion of patients who do not benefit from immunotherapy. Studies have shown that neutrophils can interact with immune cells and immune factors to affect the prognosis of patients. METHODS We first determined the infiltration level of neutrophils in tumors using the CIBERSORT algorithm and identified key genes in the final risk model by Spearman correlation analysis and subsequent Cox analysis. The risk score of each patient was obtained by multiplying the Cox regression coefficient and the gene expression level, and patients were divided into two groups based on the median of risk score. Differences in overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier survival analysis, and model accuracy was validated in independent dataset. Differences in immune infiltration and immunotherapy were evaluated by immunoassay. Finally, immunohistochemistry and western blotting were performed to verify the expression of the three genes in the colon normal and tumor tissues. RESULTS We established and validated a risk scoring model based on neutrophil-related genes in two independent datasets, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, with SLC11A1 and SLC2A3 as risk factors and MMP3 as a protective factor. A new nomogram was constructed and validated by combining clinical characteristics and the risk score model to better predict patients OS and PFS. Immune analysis showed that patients in the high-risk group had immune cell infiltration level, immune checkpoint level and tumor mutational burden, and were more likely to benefit from immunotherapy. CONCLUSIONS The low-risk group showed better OS and PFS than the high-risk group in the neutrophil-related gene-based risk model. Patients in the high-risk group presented higher immune infiltration levels and tumor mutational burden and thus may be more responsive to immunotherapy.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Oncology, Rizhao Central Hospital, Rizhao, China
| | - Mingxiu Qiu
- Department Second of Respiratory and Critical Care, Qingdao Municipal Hospital, Qingdao, China
| | - Zhongkun Lin
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxuan Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wensheng Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Yang X, Tao Y, Xu Y, Cai W, Shao Q. SLC35A2 expression drives breast cancer progression via ERK pathway activation. FEBS J 2024; 291:1483-1505. [PMID: 38143314 DOI: 10.1111/febs.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Yukai Tao
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Yan Xu
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an, China
| | - Qixiang Shao
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, China
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
45
|
Richardson R, Tejedor Navarro H, Amaral LAN, Stoeger T. Meta-Research: Understudied genes are lost in a leaky pipeline between genome-wide assays and reporting of results. eLife 2024; 12:RP93429. [PMID: 38546716 PMCID: PMC10977968 DOI: 10.7554/elife.93429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Present-day publications on human genes primarily feature genes that already appeared in many publications prior to completion of the Human Genome Project in 2003. These patterns persist despite the subsequent adoption of high-throughput technologies, which routinely identify novel genes associated with biological processes and disease. Although several hypotheses for bias in the selection of genes as research targets have been proposed, their explanatory powers have not yet been compared. Our analysis suggests that understudied genes are systematically abandoned in favor of better-studied genes between the completion of -omics experiments and the reporting of results. Understudied genes remain abandoned by studies that cite these -omics experiments. Conversely, we find that publications on understudied genes may even accrue a greater number of citations. Among 45 biological and experimental factors previously proposed to affect which genes are being studied, we find that 33 are significantly associated with the choice of hit genes presented in titles and abstracts of -omics studies. To promote the investigation of understudied genes, we condense our insights into a tool, find my understudied genes (FMUG), that allows scientists to engage with potential bias during the selection of hits. We demonstrate the utility of FMUG through the identification of genes that remain understudied in vertebrate aging. FMUG is developed in Flutter and is available for download at fmug.amaral.northwestern.edu as a MacOS/Windows app.
Collapse
Affiliation(s)
- Reese Richardson
- Interdisciplinary Biological Sciences, Northwestern UniversityEvanstonUnited States
- Department of Chemical and Biological Engineering, Northwestern UniversityEvanstonUnited States
| | - Heliodoro Tejedor Navarro
- Department of Chemical and Biological Engineering, Northwestern UniversityEvanstonUnited States
- Northwestern Institute on Complex Systems, Northwestern UniversityEvanstonUnited States
| | - Luis A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern UniversityEvanstonUnited States
- Northwestern Institute on Complex Systems, Northwestern UniversityEvanstonUnited States
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern UniversityEvanstonUnited States
- The Potocsnak Longevity Institute, Northwestern UniversityChicagoUnited States
- Simpson Querrey Lung Institute for Translational Science, Northwestern UniversityChicagoUnited States
| |
Collapse
|
46
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
47
|
Long J, Song X, Wang C, Peng L, Niu L, Li Q, Huang R, Zhang R. Global-brain functional connectivity related with trait anxiety and its association with neurotransmitters and gene expression profiles. J Affect Disord 2024; 348:248-258. [PMID: 38159654 DOI: 10.1016/j.jad.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Numerous studies have explored the neural correlates of trait anxiety, a predisposing factor for several stress-related disorders. However, the findings from previous studies are inconsistent, which might be due to the limited regions of interest (ROI). A recent approach, named global-brain functional connectivity (GBC), has been demonstrated to address the shortcomings of ROI-based analysis. Furthermore, research on the transcriptome-connectome association has provided an approach to link the microlevel transcriptome profile with the macroscale brain network. In this paper, we aim to explore the neurobiology of trait anxiety with an imaging transcriptomic approach using GBC, biological neurotransmitters, and transcriptome profiles. METHODS Using a sample of resting-state fMRI data, we investigated trait anxiety-related alteration in GBC. We further used behavioral analysis, spatial correlation analysis, and postmortem gene expression to separately assess the cognitive functions, neurotransmitters, and transcriptional profiles related to alteration in GBC in individuals with trait anxiety. RESULTS GBC values in the ventromedial prefrontal cortex and the precuneus were negatively correlated with levels of trait anxiety. This alteration was correlated with behavioral terms including social cognition, emotion, and memory. A strong association was revealed between trait anxiety-related alteration in GBC and neurotransmitters, including dopaminergic, serotonergic, GABAergic, and glutamatergic systems in the ventromedial prefrontal cortex and the precuneus. The transcriptional profiles explained the functional connectivity, with correlated genes enriched in transmembrane signaling. LIMITATIONS Several limitations should be taken into account in this research. For example, future research should consider using some different approaches based on dynamic or task-based functional connectivity analysis, include more neurotransmitter receptors, additional gene expression data from different samples or more genes related to other stress-related disorders. Meanwhile, it is of great significance to include a larger sample size of individuals with a diagnosis of major depression disorder or other disorders for analysis and comparison and apply stricter multiple-comparison correction and threshold settings in future research. CONCLUSIONS Our research employed multimodal data to investigate GBC in the context of trait anxiety and to establish its associations with neurotransmitters and transcriptome profiles. This approach may improve understanding of the neural mechanism, together with the biological and molecular genetic foundations of GBC in trait anxiety.
Collapse
Affiliation(s)
- Jixin Long
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
| | - Lanxin Peng
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. eLife 2024; 12:RP92462. [PMID: 38381130 PMCID: PMC10942615 DOI: 10.7554/elife.92462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Yuqi Shi
- Thermo Fisher ScientificSan JoseUnited States
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Katleen Willibal
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Nathan D Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - H Ronald Kaback
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbockUnited States
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| |
Collapse
|
49
|
Richardson RAK, Tejedor Navarro H, Amaral LAN, Stoeger T. Meta-Research: understudied genes are lost in a leaky pipeline between genome-wide assays and reporting of results. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.28.530483. [PMID: 36909550 PMCID: PMC10002660 DOI: 10.1101/2023.02.28.530483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Present-day publications on human genes primarily feature genes that already appeared in many publications prior to completion of the Human Genome Project in 2003. These patterns persist despite the subsequent adoption of high-throughput technologies, which routinely identify novel genes associated with biological processes and disease. Although several hypotheses for bias in the selection of genes as research targets have been proposed, their explanatory powers have not yet been compared. Our analysis suggests that understudied genes are systematically abandoned in favor of better-studied genes between the completion of -omics experiments and the reporting of results. Understudied genes remain abandoned by studies that cite these -omics experiments. Conversely, we find that publications on understudied genes may even accrue a greater number of citations. Among 45 biological and experimental factors previously proposed to affect which genes are being studied, we find that 33 are significantly associated with the choice of hit genes presented in titles and abstracts of - omics studies. To promote the investigation of understudied genes we condense our insights into a tool, find my understudied genes (FMUG), that allows scientists to engage with potential bias during the selection of hits. We demonstrate the utility of FMUG through the identification of genes that remain understudied in vertebrate aging. FMUG is developed in Flutter and is available for download at fmug.amaral.northwestern.edu as a MacOS/Windows app.
Collapse
Affiliation(s)
- Reese AK Richardson
- Interdisciplinary Biological Sciences, Northwestern University
- Department of Chemical and Biological Engineering, Northwestern University
| | - Heliodoro Tejedor Navarro
- Department of Chemical and Biological Engineering, Northwestern University
- Northwestern Institute on Complex Systems, Northwestern University
| | - Luis A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern University
- Northwestern Institute on Complex Systems, Northwestern University
- Department of Physics and Astronomy, Northwestern University
- Department of Molecular Biosciences, Northwestern University
| | - Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University
- The Potocsnak Longevity Institute, Northwestern University
- Simpson Querrey Lung Institute for Translational Science, Northwestern University
| |
Collapse
|
50
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|