1
|
Muzzopappa F, Erdel F. Beyond equilibrium: roles of RNAs in condensate control. Curr Opin Genet Dev 2025; 91:102304. [PMID: 39813812 DOI: 10.1016/j.gde.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Membraneless subcompartments organize various activities in the cell nucleus. Some of them are formed through phase separation that is driven by the polymeric and multivalent nature of biomolecules. Here, we discuss the role of RNAs in regulating nuclear subcompartments. On the one hand, chromatin-associated RNA molecules may act as binding platforms that recruit molecules to specific genomic loci. On the other hand, RNA molecules may act as multivalent scaffolds that stabilize biomolecular condensates. The active production and processing of RNAs inside of nuclear subcompartments drives them out of thermodynamic equilibrium and thereby modulates their properties. Accordingly, RNA content and transcriptional activity appear as key determinants of the biophysical and functional nature of nuclear substructures.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France.
| | - Fabian Erdel
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
2
|
Arora L, Bhowmik D, Sarkar S, Sarbahi A, Rai SK, Mukhopadhyay S. Chaperone-Mediated Heterotypic Phase Separation Prevents the Amyloid Formation of the Pathological Y145Stop Prion Protein Variant. J Mol Biol 2025; 437:168955. [PMID: 39826709 DOI: 10.1016/j.jmb.2025.168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates. Here, we show that a heat shock protein 40 (Hsp40), Ydj1, exhibits a holdase activity by potentiating the phase separation of a disease-associated stop codon mutant of the prion protein (Y145Stop) either by recruitment into Y145Stop condensates or via Y145Stop-Ydj1 two-component heterotypic phase separation that arrests the conformational conversion of Y145Stop into amyloid fibrils. Utilizing site-directed mutagenesis, multicolor fluorescence imaging, single-droplet steady-state and picosecond time-resolved fluorescence anisotropy, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy, we delineate the complex network of interactions that govern the heterotypic phase separation of Y145Stop and Ydj1. We also show that the properties of such heterotypic condensates can further be tuned by RNA that promotes the formation of multicomponent multiphasic protein-RNA condensates. Our vibrational Raman spectroscopy results in conjunction with atomic force microscopy imaging reveal that Ydj1 effectively redirects the self-assembly of Y145Stop towards a dynamically-arrested non-amyloidogenic pathway, preventing the formation of typical amyloid fibrils. Our findings underscore the importance of chaperone-mediated heterotypic phase separation in regulating aberrant phase transitions and amyloid formation associated with a wide range of deadly neurodegenerative diseases.
Collapse
Affiliation(s)
- Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
| | - Dipankar Bhowmik
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Anusha Sarbahi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
| |
Collapse
|
3
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025; 50:206-223. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Zan N, Li J, Yao J, Wu S, Li J, Chen F, Song B, Song R. Rational design of phytovirucide inhibiting nucleocapsid protein aggregation in tomato spotted wilt virus. Nat Commun 2025; 16:2034. [PMID: 40016246 PMCID: PMC11868578 DOI: 10.1038/s41467-025-57281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Ineffectiveness of managing plant viruses by chemicals has posed serious challenges in crop production. Recently, phase separation has shown to play a key role in viral lifecycle. Using inhibitors that can disturb biomolecular condensates formed by phase separation for virus control has been reported in medical field. However, the applicability of this promising antiviral tactic for plant protection has not been explored. Here, we report an inhibitor, Z9, that targets the tomato spotted wilt virus (TSWV) N protein. Z9 is capable of interacting with the amino acids in the nucleic acid binding region of TSWV N, disrupting the assembly of N and RNA into phase-separated condensates, the reduction of which is detrimental to the stability of the N protein. This study provides a strategy for phase separation-based plant virus control.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiahui Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Shang Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Feifei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| |
Collapse
|
5
|
Henn D, Yang X, Li M. Lysosomal quality control Review. Autophagy 2025:1-20. [PMID: 39968899 DOI: 10.1080/15548627.2025.2469206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Healthy cells need functional lysosomes to degrade cargo delivered by autophagy and endocytosis. Defective lysosomes can lead to severe conditions such as lysosomal storage diseases (LSDs) and neurodegeneration. To maintain lysosome integrity and functionality, cells have evolved multiple quality control pathways corresponding to different types of stress and damage. These can be divided into five levels: regulation, reformation, repair, removal, and replacement. The different levels of lysosome quality control often work together to maintain the integrity of the lysosomal network. This review summarizes the different quality control pathways and discusses the less-studied area of lysosome membrane protein regulation and degradation, highlighting key unanswered questions in the field.Abbreviation: ALR: autophagic lysosome reformation; CASM: conjugation of ATG8 to single membranes: ER: endoplasmic reticulum; ESCRT: endosomal sorting complexes required for transport; ILF: intralumenal fragment; LSD: lysosomal storage disease; LYTL: lysosomal tubulation/sorting driven by LRRK2; PITT: phosphoinositide-initiated membrane tethering and lipid transport; PE: phosphatidylethanolamine; PLR: phagocytic lysosome reformation; PS: phosphatidylserine; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns(4,5)P2: phosphatidylinositol-4,5-bisphosphate; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xi Yang
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
7
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Guan J, Hurto RL, Rai A, Azaldegui CA, Ortiz-Rodríguez LA, Biteen JS, Freddolino L, Jakob U. HP-Bodies - Ancestral Condensates that Regulate RNA Turnover and Protein Translation in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636932. [PMID: 39975000 PMCID: PMC11839049 DOI: 10.1101/2025.02.06.636932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Uncovering what drives select biomolecules to form phase-separated condensates in vivo and identifying their physiological significance are topics of fundamental importance. Here we show that nitrogen-starved Escherichia coli produce long-chain polyphosphates, which scaffold the RNA chaperone Hfq into phase-separating high molecular weight complexes together with components of the RNA translation and processing machinery. The presence of polyphosphate within these condensates, which we termed HP-bodies, controls Hfq function by selectively stabilizing polyadenylated RNAs involved in transcription and protein translation, and promoting interactions with translation- and RNA-metabolism-associated proteins involved in de novo protein synthesis. Lack of polyphosphate prevents HP-body formation, which increases cell death and significantly hinders recovery from N-starvation. In functional analogy, we demonstrate that polyP contributes specifically to the formation of Processing (P)-bodies in human cell lines, revealing that a single, highly conserved and ancestral polyanion serves as the universal scaffold for functional phase-separated condensate formation across the tree of life.
Collapse
|
9
|
Trussina IREA, Hartmann A, Desroches Altamirano C, Natarajan J, Fischer CM, Aleksejczuk M, Ausserwöger H, Knowles TPJ, Schlierf M, Franzmann TM, Alberti S. G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability. Mol Cell 2025; 85:585-601.e11. [PMID: 39729994 DOI: 10.1016/j.molcel.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates. The DEAD-box RNA helicase DDX3X attenuates RNA-RNA interactions inside RNP granule-like condensates, rendering the condensates dynamic and enabling mRNA translation. Importantly, disease-associated and catalytically inactive DDX3X variants fail to resolve such RNA-RNA interactions. Inhibiting DDX3X in cultured cells accelerates RNP granule assembly and delays their disassembly, indicating that RNA-RNA interactions contribute to RNP granule stability in cells. Our findings reveal how RNP granules generate inhibitory RNA-RNA interactions that are modulated by DEAD-box RNA helicases to ensure RNA availability and translatability.
Collapse
Affiliation(s)
- Irmela R E A Trussina
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | | | - Janani Natarajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Charlotte M Fischer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Marta Aleksejczuk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany
| | - Titus M Franzmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany.
| |
Collapse
|
10
|
Parker DM, Tauber D, Parker R. G3BP1 promotes intermolecular RNA-RNA interactions during RNA condensation. Mol Cell 2025; 85:571-584.e7. [PMID: 39637853 DOI: 10.1016/j.molcel.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Ribonucleoprotein (RNP) granules are biomolecular condensates requiring RNA and proteins to assemble. Stress granules are RNP granules formed upon increases in non-translating messenger ribonucleoprotein particles (mRNPs) during stress. G3BP1 and G3BP2 proteins are proposed to assemble stress granules through multivalent crosslinking of RNPs. We demonstrate that G3BP1 also has "condensate chaperone" functions, which promote the assembly of stress granules but are dispensable following initial condensation. Following granule formation, G3BP1 is dispensable for the RNA component of granules to persist in vitro and in cells when RNA decondensers are inactivated. These results demonstrate that G3BP1 functions as an "RNA condenser," a protein that promotes intermolecular RNA-RNA interactions stabilizing RNA condensates, leading to RNP granule persistence. Moreover, the stability of RNA-only granules highlights the need for active mechanisms limiting RNP condensate stability and lifetime.
Collapse
Affiliation(s)
- Dylan M Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Devin Tauber
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
11
|
Gordon R, Levenson R, Malady B, Al Sabeh Y, Nguyen A, Morse DE. Charge screening and hydrophobicity drive progressive assembly and liquid-liquid phase separation of reflectin protein. J Biol Chem 2025; 301:108277. [PMID: 39922493 DOI: 10.1016/j.jbc.2025.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The intrinsically disordered reflectin proteins drive tunable reflectivity for dynamic camouflage and communication in the recently evolved Loliginidae family of squid. Previous work revealed that reflectin A1 forms discrete assemblies whose size is precisely predicted by protein net charge density and charge screening by the local anion concentration. Using dynamic light scattering, FRET, and confocal microscopy, we show that these assemblies, of which 95 to 99% of bulk protein in solution is partitioned into, are dynamic intermediates to liquid protein-dense condensates formed by liquid-liquid phase separation (LLPS). Increasing salt concentration drives this progression by anionic screening of the cationic protein's Coulombic repulsion, and by increasing the contribution of the hydrophobic effect which tips the balance between short-range attraction and long-range repulsion to drive protein assembly and ultimately LLPS. Measuring fluorescence recovery after photobleaching and droplet fusion dynamics, we demonstrate that reflectin diffusivity in condensates is tuned by protein net charge density. These results illuminate the physical processes governing reflectin A1 assembly and LLPS and demonstrate the potential for reflectin A1 condensate-based tunable biomaterials. They also compliment previous observations of liquid phase separation in the Bragg lamellae of activated iridocytes and suggest that LLPS behavior may serve a critical role in governing the tunable and reversible dehydration of the membrane-bounded Bragg lamellae and vesicles containing reflectin in biophotonically active cells.
Collapse
Affiliation(s)
- Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| | - Robert Levenson
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Brandon Malady
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Alan Nguyen
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| |
Collapse
|
12
|
Ji BT, Pan HT, Qian ZG, Xia XX. Programming biological communication between distinct membraneless compartments. Nat Chem Biol 2025:10.1038/s41589-025-01840-4. [PMID: 39910287 DOI: 10.1038/s41589-025-01840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Distinct membraneless organelles within cells collaborate closely to organize crucial functions. However, biosynthetic communicating membraneless organelles have yet to be created. Here we report a binary population of membraneless compartments capable of coexistence, biological communication and controllable feedback under cellular environmental conditions. The compartment consortia emerge from two orthogonally phase-separating proteins in a cell-free expression system. Their appearance can be programmed in time and order for on-demand delivery of molecules. In particular, the consortia can sense, process and deliver functional protein cargo in response to a protease message or a DNA message that encodes the protease. Such DNA-based molecular programs can be further harnessed by installing a feedback loop that controls the information flow at the messenger RNA level. These results contribute to understanding crosstalk among membraneless organelles and provide a design principle that can guide construction of functional compartment consortia.
Collapse
Affiliation(s)
- Bo-Tao Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - He-Tong Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Xing FL, Li BR, Fang YJ, Liang C, Liu J, Wang W, Xu J, Yu XJ, Qin Y, Zhang B. G3BP2 promotes tumor progression and gemcitabine resistance in PDAC via regulating PDIA3-DKC1-hENT in a stress granules-dependent manner. Acta Pharmacol Sin 2025; 46:474-488. [PMID: 39289547 PMCID: PMC11746999 DOI: 10.1038/s41401-024-01387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is distinguished by its aggressive malignancy, limited treatment avenues and a tendency towards chemotherapy resistance, underscoring the critical need for advanced research to uncover new therapeutic approaches. Stress granules (SGs) that is implicated in cellular self-protection mechanism, along with its associated family molecules have shown pro-cancer effects and are closely related to tumor chemotherapy resistance. In this study we investigated the relationship between Ras GTPase-activating protein-binding proteins 2 (G3BP2), a core component of SGs, and the malignancy of PDAC as well as its resistance to the chemotherapy drug gemcitabine. Analyzing TCGA dataset revealed that the expression of G3BP1 and G3BP2 was significantly upregulated in PDAC compared with adjacent normal pancreatic tissues, and the high expression of G3BP2 rather than G3BP1 was significantly associated with poorer overall survival (OS) in PDAC patients. We demonstrated that knockdown of G3BP2 inhibited the proliferation and invasion of PANC-1 and CFPAC-1 cells in vitro and in vivo. By analyzing the differentially expressed genes in G3BP2 knockdown and overexpressed PANC-1 cells, we identified DKC1 that was associated with RNA stability and regulation as the target of G3BP2. We demonstrated that G3BP2 bound to PDIA3 mRNA and recruited them into SGs, increasing the stability of PDIA3 mRNA and attenuating its translation efficiency, thereby promoting DKC1 expression. Furthermore, DKC1 could bind to hENT mRNA and inhibited its expression, which enhanced gemcitabine resistance of PDAC. Therefore, we propose a novel mechanism wherein G3BP2 facilitates PDAC's resistance to chemotherapy by modulating PDIA3-DKC1-hENT in a SGs-dependent way, suggesting G3BP2 SGs a protentional therapeutic target for the treatment in PDAC.
Collapse
MESH Headings
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Humans
- Drug Resistance, Neoplasm
- Protein Disulfide-Isomerases/metabolism
- Protein Disulfide-Isomerases/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Cell Line, Tumor
- Animals
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Stress Granules/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Mice, Nude
- Cell Proliferation/drug effects
- RNA Recognition Motif Proteins/metabolism
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- RNA Helicases/metabolism
- RNA Helicases/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Mice, Inbred BALB C
- Female
- RNA-Binding Proteins
Collapse
Affiliation(s)
- Fa-Liang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo-Rui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ying-Jin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Jami KM, Farb DC, Osumi KM, Shafer CC, Criscione S, Murray DT. Small heat shock protein HSPB8 interacts with a pre-fibrillar TDP43 low complexity domain species to delay fibril formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635368. [PMID: 39974920 PMCID: PMC11838303 DOI: 10.1101/2025.01.28.635368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The loss of cellular proteostasis through aberrant stress granule formation is implicated in neurodegenerative diseases. Stress granules are formed by biomolecular condensation involving protein-protein and protein-RNA interactions. These assemblies are protective, but can rigidify, leading to amyloid-like fibril formation, a hallmark of the disease pathology. Key proteins dictating stress granule formation and disassembly, such as TDP43, contain low-complexity (LC) domains that drive fibril formation. HSPB8, a small heat shock protein, plays a critical role modulating stress granule fluidity, preventing aggregation and promoting degradation of misfolded proteins. We examined the interaction between HSPB8 and the TDP43 LC using thioflavin T (ThT) and fluorescence polarization (FP) aggregation assays, fluorescence microscopy and photobleaching experiments, and crosslinking mass spectrometry (XL-MS). Our results indicate that HSPB8 delays TDP43 LC aggregation through domain-specific interactions with fibril nucleating species, without affecting fibril elongation rates. These findings provide mechanistic insight into how ATP-independent chaperones mediate LC domain aggregation and provide a basis for investigating how the TDP43 LC subverts chaperone activity in neurodegenerative disease.
Collapse
Affiliation(s)
- Khaled M. Jami
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Daniel C. Farb
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Kayla M. Osumi
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Catelynn C. Shafer
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Sophie Criscione
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dylan T. Murray
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
15
|
Zhu Y, Lin S, Meng L, Sun M, Liu M, Li J, Tang C, Gong Z. ATP promotes protein coacervation through conformational compaction. J Mol Cell Biol 2025; 16:mjae038. [PMID: 39354680 DOI: 10.1093/jmcb/mjae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Adenosine triphosphate (ATP) has been recognized as a hydrotrope in the phase separation process of intrinsically disordered proteins (IDPs). Surprisingly, when using the disordered Arg-Gly/Arg-Gly-Gly (RG/RGG) rich motif from the HNRNPG protein as a model system, we discover a biphasic relationship between the ATP concentration and IDP phase separation. We show that, at a relatively low ATP concentration, ATP dynamically interacts with the IDP, which neutralizes protein surface charges, promotes intermolecular interactions, and consequently promotes phase separation. We further demonstrate that ATP induces a compact conformation of the IDP, accounting for the reduced solvent exchange rate and lower compression ratio during phase separation. As ATP concentration increases, its hydrotropic properties emerge, leading to the dissolution of the phase-separated droplets. Our finding uncovers a complex mechanism by which ATP molecules modulate the structure, interaction, and phase separation of IDPs and accounts for the distinct phase separation behaviors of the charge-rich RGG motif and other low-complexity IDPs.
Collapse
Affiliation(s)
- Yueling Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyan Lin
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Lingshen Meng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences & Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Sun
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Chun Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences & Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
16
|
Bian Y, Fukui Y, Ota-Elliott RS, Hu X, Sun H, Bian Z, Zhai Y, Yu H, Hu X, An H, Liu H, Morihara R, Ishiura H, Yamashita T. The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model. Neurosci Res 2025:S0168-0102(25)00016-1. [PMID: 39889925 DOI: 10.1016/j.neures.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43-positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
Collapse
Affiliation(s)
- Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ricardo Satoshi Ota-Elliott
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hangping An
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongzhi Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| |
Collapse
|
17
|
Mahendran TS, Wadsworth GM, Singh A, Gupta R, Banerjee PR. Biomolecular Condensates Can Enhance Homotypic RNA Clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.11.598371. [PMID: 38915678 PMCID: PMC11195159 DOI: 10.1101/2024.06.11.598371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant, and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures, with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which accompanies a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
Affiliation(s)
- Tharun Selvam Mahendran
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Gable M. Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Anurag Singh
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ritika Gupta
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Priya R. Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
18
|
Holehouse AS, Alberti S. Molecular determinants of condensate composition. Mol Cell 2025; 85:290-308. [PMID: 39824169 PMCID: PMC11750178 DOI: 10.1016/j.molcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
19
|
Chen X, Chowdhury MN, Jin H. An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. J Mol Biol 2025; 437:168884. [PMID: 39617253 DOI: 10.1016/j.jmb.2024.168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear. In this study, using an abundant RNA-binding protein, Sbp1, with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how an RNA binding protein with IDR modulates mRNA storage and translation. Using genomic and molecular approaches, we show that Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stacking or aggregation. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under the electron microscope, likely to be an intermediate slow translation state between actively translating polysomes and the translation-sequestered RNA granule. Moreover, the binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins, many are functionally important for general protein synthesis in the cell. Finally, post-translational modifications at the arginine in the RGG motif change the Sbp1 protein interactome and play important roles in directing cellular mRNAs to either translation or storage. Taken together, our study demonstrates that under physiological conditions, intrinsically disordered RNA binding proteins promote polysome aggregation and regulate mRNA translation and storage using multiple distinctive mechanisms. This research also establishes a framework with which functions of other IDR-containing proteins can be investigated and defined.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Mashiat N Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
20
|
Bouchama F, Mubashira K, Mas C, Le Roy A, Ebel C, Bourhis JM, Zemb T, Prevost S, Jamin M. Rabies Virus Phosphoprotein Exhibits Thermoresponsive Phase Separation with a Lower Critical Solution Temperature. J Mol Biol 2025; 437:168889. [PMID: 39645030 DOI: 10.1016/j.jmb.2024.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Rabies virus (RABV) generates membrane-less liquid organelles (Negri bodies) in the cytoplasm of its host cell, where genome transcription and replication and nucleocapsid assembly take place, but the mechanisms of their assembly and maturation remain to be explained. An essential component of the viral RNA synthesizing machine, the phosphoprotein (P), acts as a scaffold protein for the assembly of these condensates. This intrinsically disordered protein forms star-shaped dimers with N-terminal negatively charged flexible arms and C-terminal globular domains exhibiting a large dipole moment. Our study shows that in vitro self-association of RABV P drives a complex thermoresponsive phase separation with a lower critical solution temperature. Protein dimers assemble already below the saturation concentration, and condensation is driven by attractive conformation-specific interactions leading to reentrant liquid phase separation over a narrow range of salt concentration. We propose a minimal molecular model in which P can adopt three limit conformational states and the disordered N-terminal arms control the interactions between giant dipoles that is consistent with our observations.
Collapse
Affiliation(s)
- Fella Bouchama
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Khadeeja Mubashira
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Caroline Mas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 38000, Grenoble, France
| | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Jean-Marie Bourhis
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Thomas Zemb
- Institut de Chimie Séparatives de Marcoule, CEA-CEA/CNRS/UM, 30290 Bagnols-sur-cèze, France
| | | | - Marc Jamin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France.
| |
Collapse
|
21
|
Fahim LE, Marcus JM, Powell ND, Ralston ZA, Walgamotte K, Perego E, Vicidomini G, Rossetta A, Lee JE. Fluorescence lifetime sorting reveals tunable enzyme interactions within cytoplasmic condensates. J Cell Biol 2025; 224:e202311105. [PMID: 39400294 PMCID: PMC11472878 DOI: 10.1083/jcb.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Ribonucleoprotein (RNP) condensates partition RNA and protein into multiple liquid phases. The multiphasic feature of condensate-enriched components creates experimental challenges for distinguishing membraneless condensate functions from the surrounding dilute phase. We combined fluorescence lifetime imaging microscopy (FLIM) with phasor plot filtering and segmentation to resolve condensates from the dilute phase. Condensate-specific lifetimes were used to track protein-protein interactions by measuring FLIM-Förster resonance energy transfer (FRET). We used condensate FLIM-FRET to evaluate whether mRNA decapping complex subunits can form decapping-competent interactions within P-bodies. Condensate FLIM-FRET revealed the presence of core subunit interactions within P-bodies under basal conditions and the disruption of interactions between the decapping enzyme (Dcp2) and a critical cofactor (Dcp1A) during oxidative stress. Our results show a context-dependent plasticity of the P-body interaction network, which can be rewired within minutes in response to stimuli. Together, our FLIM-based approaches provide investigators with an automated and rigorous method to uncover and track essential protein-protein interaction dynamics within RNP condensates in live cells.
Collapse
Affiliation(s)
- Leyla E. Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M. Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Noah D. Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zachary A. Ralston
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Walgamotte
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jason E. Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Jeon P, Ham HJ, Choi H, Park S, Jang JW, Park SW, Cho DH, Lee HJ, Song HK, Komatsu M, Han D, Jang DJ, Lee JA. NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination. Nat Commun 2024; 15:10925. [PMID: 39738171 PMCID: PMC11686067 DOI: 10.1038/s41467-024-55446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/01/2025] Open
Abstract
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins. We find that NS1 binding protein localizes to stress granules, interacting with core components, GABARAP proteins, and p62, a protein involved in autophagy. In cells lacking NS1 binding protein, stress granule dynamics are altered, and p62 ubiquitination is increased, suggesting impaired stress granule degradation. Overexpression of NS1 binding protein reduces p62 ubiquitination. In amyotrophic lateral sclerosis patient-derived neurons, reduced NS1 binding protein and p62 disrupt stress granule morphology. These findings identify NS1 binding protein as a negative regulator of p62 ubiquitination and a facilitator of GABARAP recruitment to stress granules, implicating it in stress granule regulation and amyotrophic lateral sclerosis pathogenesis.
Collapse
Affiliation(s)
- Pureum Jeon
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Hyun-Ji Ham
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Haneul Choi
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Semin Park
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Jae-Woo Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Hyun-Jeong Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Dohyun Han
- Department of Transdiciplinary Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea.
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
| |
Collapse
|
23
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 PMCID: PMC11685540 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Li X, Liao J, Chung KK, Feng L, Liao Y, Yang Z, Liu C, Zhou J, Shen W, Li H, Yang C, Zhuang X, Gao C. Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress. Nat Commun 2024; 15:10910. [PMID: 39738069 DOI: 10.1038/s41467-024-55292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhixin Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
25
|
Gao T, Guo Z, Weng X, Cui Y, Li P, Hu T, Luo W, Dong Z, Wei P, Cai Y, Lu Y, Gao R, Li H, Zhong X, Ge J. SHEP1 alleviates cardiac ischemia reperfusion injury via targeting G3BP1 to regulate macrophage infiltration and inflammation. Cell Death Dis 2024; 15:916. [PMID: 39695094 DOI: 10.1038/s41419-024-07282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The macrophage-associated inflammation response plays an important role in myocardial ischemia-reperfusion injury (MIRI). SHEP1(SH2 domain-containing Eph receptor-binding protein 1) has been implicated in adhesion and migration of inflammatory cells. However, the role and molecular mechanism of SHEP1 regulating macrophage remains unclear during MIRI. Here, the expression of SHEP1 was increased in macrophages co-cultured with hypoxia-reoxygenated cardiomyocytes and within ischemia-reperfusion injured myocardium at the early stage of injury. Cell migration and inflammation were also enhanced in SHEP1 knock-out macrophages and macrophage-specific deficiency of SHEP1 mice under MIRI, which further led to deteriorated cardiac injury and cardiac function in vivo. Mechanistically, macrophage-derived SHEP1 competitively bound to G3BP1 to suppress inflammation via the MAPK pathway. In addition, administrating inhibitor of G3BP1 could improve cardiac function in macrophage-specific deficiency of SHEP1 mice under MIRI. Our results demonstrate that SHEP1 deficiency in macrophages exacerbates MIRI through G3BP1-dependent signaling pathway. SHEP1-G3BP1 interaction are therefore indispensable for SHEP1 regulated- infiltration and proinflammatory responses of macrophages, which provided a potential and clinically significant therapeutic target for MIRI.
Collapse
Affiliation(s)
- Tingwen Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Department of Cardiology, Rizhao Heart Hospital, Qingdao University, Rizhao, China
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yikai Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Tao Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Peng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affliated Sixth People's Hospital, Shanghai, China
| | - Yun Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yijing Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Department of Cardiology, Rizhao Heart Hospital, Qingdao University, Rizhao, China
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
26
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
27
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Recent advances in engineering synthetic biomolecular condensates. Biotechnol Adv 2024; 77:108452. [PMID: 39271032 DOI: 10.1016/j.biotechadv.2024.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates are intriguing entities found within living cells. These structures possess the ability to selectively concentrate specific components through phase separation, thereby playing a crucial role in the spatiotemporal regulation of a wide range of cellular processes and metabolic activities. To date, extensive studies have been dedicated to unraveling the intricate connections between molecular features, physical properties, and cellular functions of condensates. This collective effort has paved the way for deliberate engineering of tailor-made condensates with specific applications. In this review, we comprehensively examine the underpinnings governing condensate formation. Next, we summarize the material states of condensates and delve into the design of synthetic intrinsically disordered proteins with tunable phase behaviors and physical properties. Subsequently, we review the diverse biological functions demonstrated by synthetic biomolecular condensates, encompassing gene regulation, cellular behaviors, modulation of biochemical reactions, and manipulation of endogenous protein activities. Lastly, we discuss future challenges and opportunities in constructing synthetic condensates with tunable physical properties and customized cellular functions, which may shed light on the development of new types of sophisticated condensate systems with distinct functions applicable to various scenarios.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
King MR, Ruff KM, Pappu RV. Emergent microenvironments of nucleoli. Nucleus 2024; 15:2319957. [PMID: 38443761 PMCID: PMC10936679 DOI: 10.1080/19491034.2024.2319957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
29
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
30
|
Aierken D, Joseph JA. Accelerated Simulations Reveal Physicochemical Factors Governing Stability and Composition of RNA Clusters. J Chem Theory Comput 2024; 20:10209-10222. [PMID: 39505326 PMCID: PMC11603615 DOI: 10.1021/acs.jctc.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jerelle A. Joseph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Sun Y, Qu F, Geng R, Xiao W, Bi D, Xiong B, Liu Y, Zhu J, Chen X. Electrostatic Assembly of Gold Nanoclusters in Reverse Emulsion Enabling Nanoassemblies with Tunable Structure and Size for Enhanced NIR-II Fluorescence Imaging. ACS NANO 2024; 18:32126-32144. [PMID: 39495492 DOI: 10.1021/acsnano.4c10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The precise control of the assembly structure and size of gold nanoclusters (AuNCs) can potentially amplify their near-infrared II (NIR-II) fluorescence imaging and targeting properties. However, the conventional electrostatic assembly of AuNCs and charged molecules faces challenges in balancing the inherent electrostatic repulsions among charged units and regulating the diffusion of assembly units. These difficulties limit precise control over assembly size and structure, along with limited options for coassembled molecules, thereby restricting imaging properties and targeting capability. To circumvent this challenge, we developed a reverse emulsion-confined electrostatic assembly method. This technique efficiently constructs AuNC nanoassemblies with diverse coassembled molecules, allowing for the fine-tuning of assembly size and structure, including both core-satellite and homogeneous AuNC nanoassemblies. The development of two distinct nanoassemblies can be partially attributed to the varying diffusive rates of AuNCs or the AuNCs/polymer complex within the fused emulsion droplets. This variance arises from steric hindrances encountered during the emulsion fusion process. Interestingly, core-satellite nanoassemblies exhibit the strongest NIR-II fluorescence enhancement. Finally, the introduction of a hyaluronic acid coating on the surfaces of nanoassemblies with varying sizes enables the nanoprobes to achieve enhanced lymph node imaging through size modulation and macrophage targeting, which are used for surgical navigation to remove lymph node metastases. We envision that this self-assembly strategy can be extended to a wide range of electrostatic assembly systems for the development of multicomponent functional materials.
Collapse
Affiliation(s)
- Yufeng Sun
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bijin Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
32
|
Zhao JZ, Xia J, Brangwynne CP. Chromatin compaction during confined cell migration induces and reshapes nuclear condensates. Nat Commun 2024; 15:9964. [PMID: 39557835 PMCID: PMC11574006 DOI: 10.1038/s41467-024-54120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cell migration through small constrictions during cancer metastasis requires significant deformation of the nucleus, with associated mechanical stress on the nuclear lamina and chromatin. However, how mechanical deformation impacts various subnuclear structures, including protein and nucleic acid-rich biomolecular condensates, is largely unknown. Here, we find that cell migration through confined spaces gives rise to mechanical deformations of the chromatin network, which cause embedded nuclear condensates, including nucleoli and nuclear speckles, to deform and coalesce. Chromatin deformations exhibit differential behavior in the advancing vs. trailing region of the nucleus, with the trailing half being more permissive for de novo condensate formation. We show that this results from increased chromatin heterogeneity, which gives rise to a shift in the binodal phase boundary. Taken together, our findings show how chromatin deformation impacts condensate assembly and properties, which can potentially contribute to cellular mechanosensing.
Collapse
Affiliation(s)
- Jessica Z Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jing Xia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Princeton Materials Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
33
|
Pfannenstein J, Tyryshkin M, Gulden ME, Doud EH, Mosley AL, Reese JC. Characterization of BioID tagging systems in budding yeast and exploring the interactome of the Ccr4-Not complex. G3 (BETHESDA, MD.) 2024; 14:jkae221. [PMID: 39271111 PMCID: PMC11540327 DOI: 10.1093/g3journal/jkae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The modified Escherichia coli biotin ligase BirA* was the first developed for proximity labeling of proteins (BioID). However, it has low activity at temperatures below 37°C, which reduces its effectiveness in organisms growing at lower temperatures, such as budding yeast. Multiple derivatives of the enzymes have been engineered, but a thorough comparison of these variations of biotin ligases and the development of versatile tools for conducting these experiments in Saccharomyces cerevisiae would benefit the community. Here, we designed a suite of vectors to compare the activities of biotin ligase enzymes in yeast. We found that the newer TurboID versions were the most effective at labeling proteins, but they displayed low constitutive labeling of proteins even in the absence of exogenous biotin, due to biotin contained in the culture medium. We describe a simple strategy to express free BioID enzymes in cells that can be used as an appropriate control in BioID studies to account for the promiscuous labeling of proteins caused by random interactions between bait-BioID enzymes in cells. We also describe chemically induced BioID systems exploiting the rapamycin-stabilized FRB-FKBP interaction. Finally, we used the TurboID version of the enzyme to explore the interactome of different subunits of the Ccr4-Not gene regulatory complex. We find that Ccr4-Not predominantly labeled cytoplasmic mRNA regulators, consistent with its function in mRNA decay and translation quality control in this cell compartment.
Collapse
Affiliation(s)
- Jeffrey Pfannenstein
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Misha Tyryshkin
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Moira E Gulden
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma H Doud
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Amber L Mosley
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Joseph C Reese
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Buggiani J, Meinnel T, Giglione C, Frottin F. Advances in nuclear proteostasis of metazoans. Biochimie 2024; 226:148-164. [PMID: 38642824 DOI: 10.1016/j.biochi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The proteostasis network and associated protein quality control (PQC) mechanisms ensure proteome functionality and are essential for cell survival. A distinctive feature of eukaryotic cells is their high degree of compartmentalization, requiring specific and adapted proteostasis networks for each compartment. The nucleus, essential for maintaining the integrity of genetic information and gene transcription, is one such compartment. While PQC mechanisms have been investigated for decades in the cytoplasm and the endoplasmic reticulum, our knowledge of nuclear PQC pathways is only emerging. Recent developments in the field have underscored the importance of spatially managing aberrant proteins within the nucleus. Upon proteotoxic stress, misfolded proteins and PQC effectors accumulate in various nuclear membrane-less organelles. Beyond bringing together effectors and substrates, the biophysical properties of these organelles allow novel PQC functions. In this review, we explore the specificity of the nuclear compartment, the effectors of the nuclear proteostasis network, and the PQC roles of nuclear membrane-less organelles in metazoans.
Collapse
Affiliation(s)
- Julia Buggiani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Frottin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Ambadi Thody S, Clements HD, Baniasadi H, Lyon AS, Sigman MS, Rosen MK. Small-molecule properties define partitioning into biomolecular condensates. Nat Chem 2024; 16:1794-1802. [PMID: 39271915 PMCID: PMC11527791 DOI: 10.1038/s41557-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates regulate cellular function by compartmentalizing molecules without a surrounding membrane. Condensate function arises from the specific exclusion or enrichment of molecules. Thus, understanding condensate composition is critical to characterizing condensate function. Whereas principles defining macromolecular composition have been described, understanding of small-molecule composition remains limited. Here we quantified the partitioning of ~1,700 biologically relevant small molecules into condensates composed of different macromolecules. Partitioning varied nearly a million-fold across compounds but was correlated among condensates, indicating that disparate condensates are physically similar. For one system, the enriched compounds did not generally bind macromolecules with high affinity under conditions where condensates do not form, suggesting that partitioning is not governed by site-specific interactions. Correspondingly, a machine learning model accurately predicts partitioning using only computed physicochemical features of the compounds, chiefly those related to solubility and hydrophobicity. These results suggest that a hydrophobic environment emerges upon condensate formation, driving the enrichment and exclusion of small molecules.
Collapse
Affiliation(s)
- Sabareesan Ambadi Thody
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hanna D Clements
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamid Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew S Lyon
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Liboy-Lugo JM, Espinoza CA, Sheu-Gruttadauria J, Park JE, Xu A, Jowhar Z, Gao AL, Carmona-Negrón JA, Wittmann T, Jura N, Floor SN. G3BP isoforms differentially affect stress granule assembly and gene expression during cellular stress. Mol Biol Cell 2024; 35:ar140. [PMID: 39356796 PMCID: PMC11617104 DOI: 10.1091/mbc.e24-02-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest. Three G3BP paralogues (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogues to SG formation and gene expression changes is incompletely understood. Here, we probed the functions of G3BPs by identifying important residues for SG assembly at their N-terminal domain such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that a G3BPV11A mutant leads to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially forms SGs and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Furthermore, our work is a resource for researchers to study gene expression changes under cellular stress. Together, this work suggests that perturbing protein-protein interactions mediated by G3BPs affect SG assembly and gene expression during the ISR, and such functions are differentially regulated by G3BP paralogues under ER stress.
Collapse
Affiliation(s)
- José M. Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158
| | - Carla A. Espinoza
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Jessica Sheu-Gruttadauria
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Jesslyn E. Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Angela L. Gao
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158
| | - José A. Carmona-Negrón
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
- Department of Chemistry, University of Puerto Rico, Mayagüez, PR 00680
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
37
|
Zhao C, Cai S, Shi R, Li X, Deng B, Li R, Yang S, Huang J, Liang Y, Lu P, Yuan Z, Jia H, Jiang Z, Zhang X, Kennedy S, Wan G. HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance. Nat Cell Biol 2024; 26:1958-1970. [PMID: 39354132 DOI: 10.1038/s41556-024-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate's proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans.
Collapse
Affiliation(s)
- Changfeng Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xinru Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyuan Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuhan Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongping Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haoxiang Jia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongjin Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Ramachandran V, Brown W, Gayvert C, Potoyan DA. Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments. J Phys Chem Lett 2024; 15:10811-10817. [PMID: 39432826 DOI: 10.1021/acs.jpclett.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Liquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring the compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of condensates. In this study, we employ atomistic simulations of 20 distinct mixtures containing minimal RNA and peptide fragments which allows us to dissect the phase-separating affinities of all 20 amino acids in the presence of RNA. Our findings elucidate chemically specific interactions, hydration profiles, and ionic effects that synergistically promote or suppress protein-RNA phase separation. We map a ternary phase diagram of interactions, identifying four distinct groups of residues that promote, maintain, suppress, and disrupt protein-RNA clusters.
Collapse
Affiliation(s)
- Vysakh Ramachandran
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - William Brown
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Christopher Gayvert
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 5011, United States
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 5011, United States
| |
Collapse
|
39
|
Sahoo BR, Deng X, Wong EL, Clark N, Yang H, Subramanian V, Guzman BB, Harris SE, Dehury B, Miyashita E, Hoff JD, Kocaman V, Saito H, Dominguez D, Plavec J, Bardwell JCA. Visualizing liquid-liquid phase transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561572. [PMID: 39554013 PMCID: PMC11565804 DOI: 10.1101/2023.10.09.561572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Liquid-liquid phase condensation governs a wide range of protein-protein and protein-RNA interactions in vivo and drives the formation of membrane-less compartments such as the nucleolus and stress granules. We have a broad overview of the importance of multivalency and protein disorder in driving liquid-liquid phase transitions. However, the large and complex nature of key proteins and RNA components involved in forming condensates such as stress granules has inhibited a detailed understanding of how condensates form and the structural interactions that take place within them. In this work, we focused on the small human SERF2 protein. We show here that SERF2 contributes to the formation of stress granules. We also show that SERF2 specifically interacts with non-canonical tetrahelical RNA structures called G-quadruplexes, structures which have previously been linked to stress granule formation. The excellent biophysical amenability of both SERF2 and RNA G4 quadruplexes has allowed us to obtain a high-resolution visualization of the multivalent protein-RNA interactions involved in liquid-liquid phase transitions. Our visualization has enabled us to characterize the role that protein disorder plays in these transitions, identify the specific contacts involved, and describe how these interactions impact the structural dynamics of the components involved in liquid-liquid phase transitions, thus enabling a detailed understanding of the structural transitions involved in early stages of ribonucleoprotein condensate formation.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Ee Lin Wong
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nathan Clark
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Harry Yang
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | | | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal-576104, India
| | - Emi Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
| | - Vojč Kocaman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
40
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
41
|
Joshi A, Walimbe A, Sarkar S, Arora L, Kaur G, Jhandai P, Chatterjee D, Banerjee I, Mukhopadhyay S. Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates. Nat Commun 2024; 15:9215. [PMID: 39455581 PMCID: PMC11511825 DOI: 10.1038/s41467-024-53494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Physical properties of biomolecular condensates formed via phase separation of proteins and nucleic acids are associated with cell physiology and disease. Condensate properties can be regulated by several cellular factors including post-translational modifications. Here, we introduce an application of intermolecular energy migration via homo-FRET (Förster resonance energy transfer), a nanometric proximity ruler, to study the modulation in short- and long-range protein-protein interactions leading to the changes in the physical properties of condensates of fluorescently-tagged FUS (Fused in Sarcoma) that is associated with the formation of cytoplasmic and nuclear membraneless organelles. We show that homoFRET captures modulations in condensate properties of FUS by RNA, ATP, and post-translational arginine methylation. We also extend the homoFRET methodology to study the in-situ formation of cytoplasmic stress granules in mammalian cells. Our studies highlight the broad applicability of homoFRET as a potent generic tool for studying intracellular phase transitions involved in function and disease.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Gaganpreet Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Prince Jhandai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Physiological Sciences, Oklahoma State University, Oklahoma, OK, USA
| | - Dhruba Chatterjee
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
| |
Collapse
|
42
|
Vidya E, Jami-Alahmadi Y, Mayank AK, Rizwan J, Xu JMS, Cheng T, Leventis R, Sonenberg N, Wohlschlegel JA, Vera M, Duchaine TF. EDC-3 and EDC-4 regulate embryonic mRNA clearance and biomolecular condensate specialization. Cell Rep 2024; 43:114781. [PMID: 39331503 DOI: 10.1016/j.celrep.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.
Collapse
Affiliation(s)
- Elva Vidya
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Jia Ming Stella Xu
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Tianhao Cheng
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Rania Leventis
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada.
| |
Collapse
|
43
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Zhou R, Pan J, Zhang WB, Li XD. Myosin-5a facilitates stress granule formation by interacting with G3BP1. Cell Mol Life Sci 2024; 81:430. [PMID: 39387926 PMCID: PMC11467138 DOI: 10.1007/s00018-024-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.
Collapse
Affiliation(s)
- Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiabin Pan
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
48
|
Qin M, Fan W, Li L, Xu T, Zhang H, Chen F, Man J, Kombe AJK, Zhang J, Shi Y, Yao X, Yang Z, Hou Z, Ruan K, Liu D. PRMT1 and TDRD3 promote stress granule assembly by rebuilding the protein-RNA interaction network. Int J Biol Macromol 2024; 277:134411. [PMID: 39097054 DOI: 10.1016/j.ijbiomac.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Linge Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwen Man
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhonghuai Hou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
49
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Guo Y, Zhang X. Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates. Trends Biochem Sci 2024; 49:901-915. [PMID: 39034215 DOI: 10.1016/j.tibs.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.
Collapse
Affiliation(s)
- Yinfeng Guo
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, PR China.
| |
Collapse
|