1
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Hughson AL, Hannon G, Salama NA, Vrooman TG, Stockwell CA, Mills BN, Garrett-Larsen J, Qiu H, Katerji R, Benoodt L, Johnston CJ, Murphy JD, Kruger E, Ye J, Gavras NW, Keeley DC, Qin SS, Lesch ML, Muhitch JB, Love TM, Calvi LM, Lord EM, Luheshi N, Elyes J, Linehan DC, Gerber SA. Integrating IL-12 mRNA nanotechnology with SBRT eliminates T cell exhaustion in preclinical models of pancreatic cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102350. [PMID: 39469666 PMCID: PMC11513558 DOI: 10.1016/j.omtn.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024]
Abstract
Pronounced T cell exhaustion characterizes immunosuppressive tumors, with the tumor microenvironment (TME) employing multiple mechanisms to elicit this suppression. Traditional immunotherapies, such as immune checkpoint blockade, often fail due to their focus primarily on T cells. To overcome this, we utilized a proinflammatory cytokine, interleukin (IL)-12, that re-wires the immunosuppressive TME by inducing T cell effector function while also repolarizing immunosuppressive myeloid cells. Due to toxicities observed with systemic administration of this cytokine, we utilized lipid nanoparticles encapsulating mRNA encoding IL-12 for intratumoral injection. This strategy has been proven safe and tolerable in early clinical trials for solid malignancies. We report an unprecedented loss of exhausted T cells and the emergence of an activated phenotype in murine pancreatic ductal adenocarcinoma (PDAC) treated with stereotactic body radiation therapy (SBRT) and IL-12mRNA. Our mechanistic findings reveal that each treatment modality contributes to the T cell response differently, with SBRT expanding the T cell receptor repertoire and IL-12mRNA promoting robust T cell proliferation and effector status. This distinctive T cell signature mediated marked growth reductions and long-term survival in local and metastatic PDAC models. This is the first study of its kind combining SBRT with IL-12mRNA and provides a promising new approach for treating this aggressive malignancy.
Collapse
Affiliation(s)
- Angela L. Hughson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Noah A. Salama
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Tara G. Vrooman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Bradley N. Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roula Katerji
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren Benoodt
- University of Rochester Genomics Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph D. Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma Kruger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicholas W. Gavras
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - David C. Keeley
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyang S. Qin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L. Lesch
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason B. Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tanzy M.T. Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M. Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edith M. Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nadia Luheshi
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jim Elyes
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
3
|
Garcia CC, Venkat A, McQuaid DC, Agabiti S, Tong A, Cardone RL, Starble R, Sogunro A, Jacox JB, Ruiz CF, Kibbey RG, Krishnaswamy S, Muzumdar MD. Beta cells are essential drivers of pancreatic ductal adenocarcinoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626079. [PMID: 39677599 PMCID: PMC11642786 DOI: 10.1101/2024.11.29.626079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic endocrine-exocrine crosstalk plays a key role in normal physiology and disease. For instance, endocrine islet beta (β) cell secretion of insulin or cholecystokinin (CCK) promotes progression of pancreatic adenocarcinoma (PDAC), an exocrine cell-derived tumor. However, the cellular and molecular mechanisms that govern endocrine-exocrine signaling in tumorigenesis remain incompletely understood. We find that β cell ablation impedes PDAC development in mice, arguing that the endocrine pancreas is critical for exocrine tumorigenesis. Conversely, obesity induces β cell hormone dysregulation, alters CCK-dependent peri-islet exocrine cell transcriptional states, and enhances islet proximal tumor formation. Single-cell RNA-sequencing, in silico latent-space archetypal and trajectory analysis, and genetic lineage tracing in vivo reveal that obesity stimulates postnatal immature β cell expansion and adaptation towards a pro-tumorigenic CCK+ state via JNK/cJun stress-responsive signaling. These results define endocrine-exocrine signaling as a driver of PDAC development and uncover new avenues to target the endocrine pancreas to subvert exocrine tumorigenesis.
Collapse
|
4
|
Yamaguchi N, Wu YG, Ravetch E, Takahashi M, Khan AG, Hayashi A, Mei W, Hsu D, Umeda S, de Stanchina E, Lorenz IC, Iacobuzio-Donahue CA, Tavazoie SF. A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention. Cancer Discov 2024; 14:2489-2508. [PMID: 39028915 PMCID: PMC11611693 DOI: 10.1158/2159-8290.cd-23-1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
Collapse
Affiliation(s)
- Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Y Gloria Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan Ravetch
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Abdul G. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Akimasa Hayashi
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Dennis Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
6
|
Machuca J, Wirkus J, Ead AS, Vahmani P, Matsukuma KE, Mackenzie GG, Oteiza PI. Dietary ω-3 Fatty Acids Mitigate Intestinal Barrier Integrity Alterations in Mice Fed a High-Fat Diet: Implications for Pancreatic Carcinogenesis. J Nutr 2024:S0022-3166(24)01132-5. [PMID: 39510504 DOI: 10.1016/j.tjnut.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity. OBJECTIVE The objective of this study was to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)]. METHODS Male and female KC mice were randomly assigned into 1 of the following 4 groups: 1) a control diet containing ∼11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C), 2) the control diet with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3), 3) an HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF), and 4) an HFD with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3). RESULTS Consumption of an HFD for 8 wk caused: 1) disruption of tight junction structure and function; 2) decreased goblet cell number; 3) higher colonic Toll-like receptor 4 (TLR4) and NADPH oxidase 1 expression; 4) activation of TLR4-triggered pathways, that is, NF-κB, c-Jun N-terminal kinase; 5) elevated plasma lipopolysaccharide concentrations; and 6) higher pancreatic TLR4 expression, and 7) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3. CONCLUSIONS Our findings support the concept that, in the context of obesity, ω-3 FAs have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
Collapse
Affiliation(s)
- Jazmin Machuca
- Department of Nutrition, University of California, Davis, CA, United States
| | - Joanna Wirkus
- Department of Nutrition, University of California, Davis, CA, United States
| | - Aya S Ead
- Department of Nutrition, University of California, Davis, CA, United States
| | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
7
|
Chen Y, Yin X, Xu R, Ruze R, Song J, Yin C, Hu C, Wang C, Xu Q, Zhao Y. Cancer-Associated Endocrine Cells Participate in Pancreatic Carcinogenesis. Gastroenterology 2024; 167:1167-1182.e23. [PMID: 39048054 DOI: 10.1053/j.gastro.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied. METHODS The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo. RESULTS Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and β cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and β cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. CONCLUSIONS This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice
- Humans
- Tumor Microenvironment
- Coculture Techniques
- Single-Cell Analysis
- Cell Transdifferentiation
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/metabolism
- Transcriptome
- Cell Line, Tumor
- Glucagon-Secreting Cells/pathology
- Glucagon-Secreting Cells/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Gene Expression Regulation, Neoplastic
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Disease Models, Animal
- Mice, Transgenic
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Noè R, Carrer A. Diet predisposes to pancreatic cancer through cellular nutrient sensing pathways. FEBS Lett 2024; 598:2470-2481. [PMID: 38886112 DOI: 10.1002/1873-3468.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
10
|
Pita-Grisanti V, Velez-Bonet E, Chasser K, Hurst Z, Liette A, Vulic G, Dubay K, Lahooti A, Badi N, Ueltschi O, Gumpper-Fedus K, Hsueh HY, Lahooti I, Chavez-Tomar M, Terhorst S, Knoblaugh SE, Cao L, Huang W, Coss CC, Mace TA, Choueiry F, Hinton A, Culp S, Mitchell JM, Schmandt R, Onstad Grinsfelder M, Basen-Engquist K, Cruz-Monserrate Z. Physical Activity Decreases Inflammation and Delays the Development of Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:3058-3071. [PMID: 38781455 PMCID: PMC11405134 DOI: 10.1158/0008-5472.can-23-1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity represent a potential approach to prevent obesity-associated PDAC. In this study, we examined whether decreasing obesity through physical activity (PA) and/or dietary changes could decrease inflammation in humans and prevent obesity-associated PDAC in mice. Comparison of circulating inflammatory-associated cytokines in subjects (overweight and obese) before and after a PA intervention revealed PA lowered systemic inflammatory cytokines. Mice with pancreatic-specific inducible KrasG12D expression were exposed to PA and/or dietary interventions during and after obesity-associated cancer initiation. In mice with concurrent diet-induced obesity and KrasG12D expression, the PA intervention led to lower weight gain, suppressed systemic inflammation, delayed tumor progression, and decreased proinflammatory signals in the adipose tissue. However, these benefits were not as evident when obesity preceded pancreatic KrasG12D expression. Combining PA with diet-induced weight loss (DI-WL) delayed obesity-associated PDAC progression in the genetically engineered mouse model, but neither PA alone nor combined with DI-WL or chemotherapy prevented PDAC tumor growth in orthotopic PDAC models regardless of obesity status. PA led to the upregulation of Il15ra in adipose tissue. Adipose-specific overexpression of Il15 slowed PDAC growth but only in nonobese mice. Overall, our study suggests that PA alone or combined with DI-WL can reduce inflammation and delay obesity-associated PDAC development or progression. Lifestyle interventions that prevent or manage obesity or therapies that target weight loss-related molecular pathways could prevent progression of PDAC. Significance: Physical activity reduces inflammation and induces changes to adipose-related signaling to suppress pancreatic cancer, supporting the potential of obesity management strategies to reduce the risk of developing pancreatic cancer. See related commentary by Sogunro and Muzumdar, p. 2935.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio
| | - Ericka Velez-Bonet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Zachary Hurst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Alexus Liette
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Grace Vulic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kelly Dubay
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ali Lahooti
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Niharika Badi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Olivia Ueltschi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hsiang-Yin Hsueh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Ila Lahooti
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Myrriah Chavez-Tomar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Samantha Terhorst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Lei Cao
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Huang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Fouad Choueiry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jennifer M Mitchell
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosemarie Schmandt
- Division of Surgery, Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michaela Onstad Grinsfelder
- Division of Surgery, Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Basen-Engquist
- Department of Behavioral Science, Center for Energy Balance, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Sogunro A, Muzumdar MD. Keep It Moving: Physical Activity in the Prevention of Obesity-Driven Pancreatic Cancer. Cancer Res 2024; 84:2935-2937. [PMID: 39279380 DOI: 10.1158/0008-5472.can-24-1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/18/2024]
Abstract
Despite the already dire impact of pancreatic cancer, a growing subset of patients with obesity exhibits an amplified risk of disease and worse outcomes. Mouse models have revealed that obesity is distinctly pathogenic, accelerating pancreatic ductal adenocarcinoma (PDAC) progression and inducing increased desmoplasia and myeloid cell infiltration in the tumor microenvironment. However, whether and how obesity-countering interventions, such as exercise, reverse the protumorigenic effects of obesity is incompletely understood. In this issue of Cancer Research, Pita-Grisanti and colleagues investigate the impact of physical activity (PA) in disrupting obesity-driven PDAC. Employing a variety of sophisticated models, including autochthonous genetically engineered mice, orthotopic syngeneic allografts, high-fat diet-induced obesity, and PA interventions in mice and humans, the authors found that PA impedes PDAC development in obese mice but does not impact the growth of advanced tumors. These antitumor effects correlated with reduced inflammation and fibrosis in the tumor microenvironment, a decline in high-fat diet-induced circulating inflammatory cytokines, and an increase in the IL15 signaling axis in white adipose tissue. Although adipose-targeted IL15 therapy was effective in suppressing advanced tumor growth in lean mice, obese mice were resistant to its therapeutic benefits. Together, the findings argue that PA delays obesity-driven early PDAC progression, implicating the preferential benefit of exercise as a preventative strategy. They further identify changes in obesity-associated local and systemic cytokine production as a possible mechanism for the antitumor effects of PA and help define context-specific determinants of response for emerging IL15-based immunotherapies. See related article by Pita-Grisanti et al., p. 3058.
Collapse
Affiliation(s)
- Akin Sogunro
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut
- M.D.-Ph.D. Program, Yale University, New Haven, Connecticut
| | - Mandar D Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut
- M.D.-Ph.D. Program, Yale University, New Haven, Connecticut
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University, New Haven, Connecticut
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, Connecticut
- Molecular Cell Biology, Genetics, and Development Graduate Program, Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Pang C, Dong P, Yang J, Fan Z, Cheng Z, Zhan H. Non-alcoholic fatty pancreas disease: an updated review. JOURNAL OF PANCREATOLOGY 2024; 7:212-221. [DOI: 10.1097/jp9.0000000000000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Ectopic accumulation of fat can cause a variety of metabolic diseases, and the emerging non-alcoholic fatty pancreas disease (NAFPD) is increasingly being recognized by clinicians as a cause for concern. NAFPD is a disease caused by abnormal accumulation of adipose tissue in the pancreas, which is related to obesity. The main feature of NAFPD is death of acinar cells, which are then replaced by adipose cells. However, the underlying molecular mechanisms have not been fully explored. Obesity, aging, and metabolic syndrome are independent risk factors for the occurrence and development of NAFPD. Studies have shown that NAFPD leads to insulin resistance and pancreatic dysfunction, increases the risk of diabetes mellitus, worsens the severity of pancreatitis, and is significantly correlated with pancreatic cancer and postoperative pancreatic fistula. There is no standard treatment for NAFPD; exercise, a balanced diet, and lifestyle can help reduce pancreatic fat; however, other treatment modalities such as drugs and bariatric surgery are still being explored. The specific pathological mechanism of NAFPD remains unclear, and its potential association with various clinical diseases requires further study. This review summarizes the etiology, diagnosis, clinical consequences, and potential therapeutic strategies of NAFPD.
Collapse
Affiliation(s)
- Chaoyu Pang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Peng Dong
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jian Yang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zhiqiang Cheng
- Division of Colorectal Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Fu Y, Tao J, Liu T, Liu Y, Qiu J, Su D, Wang R, Luo W, Cao Z, Weng G, Zhang T, Zhao Y. Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer. Mol Cancer 2024; 23:140. [PMID: 38982491 PMCID: PMC11232163 DOI: 10.1186/s12943-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
14
|
Jones A, Netto J, Foote T, Ruliffson B, Whittington C. Combined effects of matrix stiffness and obesity-associated signaling directs progressive phenotype in PANC-1 pancreatic cancer cells in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598541. [PMID: 38915620 PMCID: PMC11195209 DOI: 10.1101/2024.06.11.598541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Obesity is a leading risk factor of pancreatic ductal adenocarcinoma (PDAC) that contributes to poor disease prognosis and outcomes. Retrospective studies have identified this link, but interactions surrounding obesity and PDAC are still unclear. Research has shifted to contributions of fibrosis (desmoplasia) on malignancy, which involves increased deposition of collagens and other extracellular matrix (ECM) molecules and increased ECM crosslinking, all of which contribute to increased tissue stiffening. However, fibrotic stiffening is underrepresented as a model feature in current PDAC models. Fibrosis is shared between PDAC and obesity, and can be leveraged for in vitro model design, as current animal obesity models of PDAC are limited in their ability to isolate individual components of fibrosis to study cell behavior. In the current study, methacrylated type I collagen (PhotoCol®) was photo-crosslinked to pathological stiffness levels to recapitulate fibrotic ECM stiffening. PANC-1 cells were encapsulated within PhotoCol®, and the tumor-tissue constructs were prepared to represent normal (healthy) (~600 Pa) and pathological (~2000 Pa) tissues. Separately, human mesenchymal stem cells were differentiated into adipocytes representing lean (2D differentiation) and obese fat tissue (3D collagen matrix differentiation), and conditioned media was applied to PANC-1 tumor-tissue constructs. Conditioned media from obese adipocytes showed increased vimentin expression, a hallmark of invasiveness and progression, that was not seen after exposure to media from lean adipocytes or control media. Characterization of the obese adipocyte secretome suggested that some PANC-1 differences may arise from increased interleukin-8 and -10 compared to lean adipocytes. Additionally, high matrix stiffness associated induced an amoeboid morphology in PANC-1 cells that was not present at low stiffness. Amoeboid morphology is an accessory to epithelial-to-mesenchymal transition and is used to navigate complex ECM environments. This plasticity has greater implications for treatment efficacy of metastatic cancers. Overall, this work 1) highlights the importance of investigating PDAC-obesity interactions to study the effects on disease progression and persistence, 2) establishes PhotoCol® as a matrix material that can be leveraged to study amoeboid morphology and invasion in PDAC, and 3) emphasizes the importance of integrating both biophysical and biochemical interactions associated within both pathologies for in vitro PDAC models.
Collapse
Affiliation(s)
- A.E Jones
- Worcester Polytechnic Institute, Department of Biomedical Engineering
| | - J.F. Netto
- Worcester Polytechnic Institute, Department of Biomedical Engineering
| | - T.L. Foote
- Worcester Polytechnic Institute, Department of Biomedical Engineering
| | - B.N.K. Ruliffson
- Worcester Polytechnic Institute, Department of Biomedical Engineering
| | - C.F. Whittington
- Worcester Polytechnic Institute, Department of Biomedical Engineering
| |
Collapse
|
15
|
Zhou Y, He Z, Li T, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. 3D Chromatin Alteration by Disrupting β-Catenin/CBP Interaction Is Enriched with Insulin Signaling in Pancreatic Cancer. Cancers (Basel) 2024; 16:2202. [PMID: 38927910 PMCID: PMC11201718 DOI: 10.3390/cancers16122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of how the functional crosstalk between the antagonist and the β-catenin/CBP interaction affects changes in 3D chromatin architecture and, thereby, gene expression and downstream effects remains to be elucidated. Here, we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate that the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1-a key insulin signaling gene-significantly impeding pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Zhijing He
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Tian Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Lavanya Choppavarapu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Gustavo W. Leone
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Victor X. Jin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Sato K, Hikita H, Shigekawa M, Soma K, Yamauchi R, Sung J, Kato S, Sasaki Y, Kudo S, Fukumoto K, Shirai K, Murai K, Tahata Y, Yoshioka T, Nishio A, Saito Y, Kodama T, Sasaki Y, Tatsumi T, Takehara T. The serum tenascin C level is a marker of metabolic disorder-related inflammation affecting pancreatic cancer prognosis. Sci Rep 2024; 14:12028. [PMID: 38797735 PMCID: PMC11128447 DOI: 10.1038/s41598-024-62498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity is a risk factor for pancreatic cancer development, partly due to the tissue environment of metabolic disorder-related inflammation. We aimed to detect a tissue environment marker triggered by obesity-related metabolic disorders related to pancreatic cancer progression. In murine experiments, Bl6/j mice fed a normal diet (ND) or a high-fat diet (HFD) were orthotopically injected with mPKC1, a murine-derived pancreatic cancer cell line. We used stocked sera from 140 pancreatic cancer patients for analysis and 14 colon polyp patients as a disease control. Compared with ND-fed mice, HFD-fed mice exhibited obesity, larger tumors, and worse prognoses. RNA sequencing of tumors identified tenascin C (TNC) as a candidate obesity-related serum tissue environment marker with elevated expression in tumors of HFD-fed mice. Serum TNC levels were greater in HFD-fed mice than in ND-fed mice. In pancreatic cancer patients, serum TNC levels were greater than those in controls. The TNC-high group had more metabolic disorders and greater CA19-9 levels than did the TNC-low group. There was no relationship between serum TNC levels and disease stage. Among 77 metastatic patients treated with chemotherapy, a high serum TNC concentration was an independent poor prognostic factor. Pancreatic cancer patients with high serum TNC levels experienced progression more rapidly.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Kazumasa Soma
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Ryohei Yamauchi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Jihyun Sung
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Seiya Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Shinnosuke Kudo
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Kenji Fukumoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Kumiko Shirai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Yuki Tahata
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Yutaka Sasaki
- Osaka Central Hospital, 3-3-30, Umeda, Kitaku, Osaka City, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, Japan.
| |
Collapse
|
17
|
Salg GA, Steinle V, Labode J, Wagner W, Studier-Fischer A, Reiser J, Farjallah E, Guettlein M, Albers J, Hilgenfeld T, Giese NA, Stiller W, Nickel F, Loos M, Michalski CW, Kauczor HU, Hackert T, Dullin C, Mayer P, Kenngott HG. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci Rep 2024; 14:10136. [PMID: 38698049 PMCID: PMC11065985 DOI: 10.1038/s41598-024-60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Willi Wagner
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Johanna Reiser
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Elyes Farjallah
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Michelle Guettlein
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Jonas Albers
- Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix Nickel
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Loos
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Christoph W Michalski
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Dullin
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany
| | - Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hannes Goetz Kenngott
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
19
|
Lloyd EG, Henríquez JA, Biffi G. Modelling the micro- and macro- environment of pancreatic cancer: from patients to pre-clinical models and back. Dis Model Mech 2024; 17:dmm050624. [PMID: 38639944 PMCID: PMC11051978 DOI: 10.1242/dmm.050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with very low survival rates. Over the past 50 years, improvements in PDAC survival have significantly lagged behind the progress made in other cancers. PDAC's dismal prognosis is due to typical late-stage diagnosis combined with lack of effective treatments and complex mechanisms of disease. We propose that improvements in survival are partly hindered by the current focus on largely modelling and targeting PDAC as one disease, despite it being heterogeneous. Implementing new disease-representative pre-clinical mouse models that capture this complexity could enable the development of transformative therapies. Specifically, these models should recapitulate human PDAC late-stage biology, heterogeneous genetics, extensive non-malignant stroma, and associated risk factors and comorbidities. In this Perspective, we focus on how pre-clinical mouse models could be improved to exemplify key features of PDAC micro- and macro- environments, which would drive clinically relevant patient stratification, tailored treatments and improved survival.
Collapse
Affiliation(s)
- Eloise G. Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
20
|
Fukusada S, Shimura T, Natsume M, Nishigaki R, Okuda Y, Iwasaki H, Sugimura N, Kitagawa M, Katano T, Tanaka M, Ozeki K, Kubota E, Hayashi K, Kataoka H. Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity. Cell Oncol (Dordr) 2024; 47:229-244. [PMID: 37640984 DOI: 10.1007/s13402-023-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear. METHODS PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity. RESULTS Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis. CONCLUSION Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.
Collapse
Affiliation(s)
- Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yusuke Okuda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mika Kitagawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takahito Katano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
21
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
22
|
Han L, Jiang Y, Shi M, Gan L, Wu Z, Xue M, Zhu Y, Xiong C, Wang T, Lin X, Shen B, Jiang L, Chen H. LIPH contributes to glycolytic phenotype in pancreatic ductal adenocarcinoma by activating LPA/LPAR axis and maintaining ALDOA stability. J Transl Med 2023; 21:838. [PMID: 37990271 PMCID: PMC10664664 DOI: 10.1186/s12967-023-04702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.
Collapse
Affiliation(s)
- Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lina Gan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhichong Wu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
23
|
Zhou Y, Li T, He Z, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. Reprogramming of 3D chromatin domains by antagonizing the β-catenin/CBP interaction attenuates insulin signaling in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566585. [PMID: 38013997 PMCID: PMC10680786 DOI: 10.1101/2023.11.10.566585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of the functional crosstalk between antagonizing the β-catenin/CBP interaction effect changes in 3D chromatin architecture and thereby gene expression and downstream effects remains to be elucidated. Here we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after the treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1, a key insulin signaling gene, significantly impede pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
|
24
|
Hughson AL, Hannon G, Salama NA, Vrooman TG, Stockwell CA, Mills BN, Garrett-Larsen J, Qiu H, Katerji R, Benoodt L, Johnston CJ, Murphy JD, Kruger E, Ye J, Gavras NW, Keeley DC, Qin SS, Lesch ML, Muhitch JB, Love TMT, Calvi LM, Lord EM, Luheshi N, Elyes J, Linehan DC, Gerber SA. Local Delivery of SBRT and IL12 by mRNA Technology Overcomes Immunosuppressive Barriers to Eliminate Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564833. [PMID: 37961513 PMCID: PMC10635000 DOI: 10.1101/2023.10.30.564833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The immunosuppressive milieu in pancreatic cancer (PC) is a significant hurdle to treatments, resulting in survival statistics that have barely changed in 5 decades. Here we present a combination treatment consisting of stereotactic body radiation therapy (SBRT) and IL-12 mRNA lipid nanoparticles delivered directly to pancreatic murine tumors. This treatment was effective against primary and metastatic models, achieving cures in both settings. IL-12 protein concentrations were transient and localized primarily to the tumor. Depleting CD4 and CD8 T cells abrogated treatment efficacy, confirming they were essential to treatment response. Single cell RNA sequencing from SBRT/IL-12 mRNA treated tumors demonstrated not only a complete loss of T cell exhaustion, but also an abundance of highly proliferative and effector T cell subtypes. SBRT elicited T cell receptor clonal expansion, whereas IL-12 licensed these cells with effector function. This is the first report demonstrating the utility of SBRT and IL-12 mRNA in PC. Statement of significance This study demonstrates the use of a novel combination treatment consisting of radiation and immunotherapy in murine pancreatic tumors. This treatment could effectively treat local and metastatic disease, suggesting it may have the potential to treat a cancer that has not seen a meaningful increase in survival in 5 decades.
Collapse
|
25
|
Hsu WL, Hsieh YT, Chen WM, Chien MH, Luo WJ, Chang JH, Devlin K, Su KY. High-fat diet induces C-reactive protein secretion, promoting lung adenocarcinoma via immune microenvironment modulation. Dis Model Mech 2023; 16:dmm050360. [PMID: 37929799 PMCID: PMC10651111 DOI: 10.1242/dmm.050360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kevin Devlin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10055, Taiwan
| |
Collapse
|
26
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Babic A, Wang QL, Lee AA, Yuan C, Rifai N, Luo J, Tabung FK, Shadyab AH, Wactawski-Wende J, Saquib N, Kim J, Kraft P, Sesso HD, Buring JE, Giovannucci EL, Manson JE, Stampfer MJ, Ng K, Fuchs CS, Wolpin BM. Sex-Specific Associations between Adiponectin and Leptin Signaling and Pancreatic Cancer Survival. Cancer Epidemiol Biomarkers Prev 2023; 32:1458-1469. [PMID: 37555827 PMCID: PMC10592159 DOI: 10.1158/1055-9965.epi-23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Circulating adiponectin and leptin have been associated with risk of pancreatic cancer. However, the relationship between long-term exposure to these adipokines in the prediagnostic period with patient survival has not been investigated. METHODS Adipokine levels were measured in prospectively collected samples from 472 patients with pancreatic cancer. Because of sex-specific differences in adipokine levels, associations were evaluated separately for men and women. In a subset of 415 patients, we genotyped 23 SNPs in adiponectin receptor genes (ADIPOR1 and ADIPOR2) and 30 SNPs in the leptin receptor gene (LEPR). RESULTS Adiponectin levels were inversely associated with survival in women [HR, 1.71; 95% confidence interval (CI), 1.15-2.54]; comparing top with bottom quartile but not in men (HR, 0.89; 95% CI, 0.46-1.70). The SNPs rs10753929 and rs1418445 in ADIPOR1 were associated with survival in the combined population (per minor allele HR, 0.66; 95% CI, 0.51-0.84, and HR, 1.33; 95% CI, 1.12-1.58, respectively). Among SNPs in LEPR, rs12025906, rs3790431, and rs17127601 were associated with survival in the combined population [HRs, 1.54 (95% CI, 1.25-1.90), 0.72 (95% CI, 0.59-0.88), and 0.70 (95% CI, 0.56-0.89), respectively], whereas rs11585329 was associated with survival in men only (HR, 0.39; 95% CI, 0.23-0.66; Pinteraction = 0.0002). CONCLUSIONS High levels of adiponectin in the prediagnostic period were associated with shorter survival among women, but not among men with pancreatic cancer. Several polymorphisms in ADIPOR1 and LEPR are associated with patient survival. IMPACT Our findings reveal the association between adipokine signaling and pancreatic cancer survival and demonstrate the importance of examining obesity-associated pathways in relation to pancreatic cancer in a sex-specific manner.
Collapse
Affiliation(s)
- Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Qiao-Li Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Alice A. Lee
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Nader Rifai
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Fred K. Tabung
- Department of Internal Medicine, Ohio State University, Columbus, OH
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York, Buffalo, NY
| | - Nazmus Saquib
- College of Medicine, Sulaiman Al Rajhi University, Al Bukairiyah, Kingdom of Saudi Arabia
| | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Howard D. Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - JoAnn E. Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Meir J. Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Charles S. Fuchs
- Hematology and Oncology Product Development, Genentech & Roche, South San Francisco, CA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Walsh RM, Ambrose J, Jack JL, Eades AE, Bye B, Ruckert MT, Olou AA, Messaggio F, Chalise P, Pei D, VanSaun MN. Adipose-Tumor Crosstalk contributes to CXCL5 Mediated Immune Evasion in PDAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553432. [PMID: 37645755 PMCID: PMC10461999 DOI: 10.1101/2023.08.15.553432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. Cytokines responsible for stimulating these receptors include CXCL ligands, typically secreted by activated immune cells, fibroblasts, and even adipocytes. Obesity has been linked to poor patient outcome and altered anti-tumor immunity. Adipose-derived cytokines and chemokines have been implicated as potential drivers of tumor cell immune evasion, suggesting a possibility of susceptibility to targeting specifically in the context of obesity. Methods RNA-sequencing of human PDAC cell lines was used to assess differential influences on the cancer cell transcriptome after treatment with conditioned media from peri-pancreatic adipose tissue of lean and obese PDAC patients. The adipose-induced secretome of PDAC cells was then assessed by cytokine arrays and ELISAs. Lentiviral transduction and CRISPR-Cas9 was used to knock out CXCL5 from a murine PDAC cell line for orthotopic tumor studies in diet-induced obese, syngeneic mice. Flow cytometry was used to define the immune profiles of tumors. Anti-PD-1 immune checkpoint blockade therapy was administered to alleviate T cell exhaustion and invoke an immune response, while the mice were monitored at endpoint for differences in tumor size. Results The chemokine CXCL5 was secreted in response to stimulation of PDAC cells with human adipose conditioned media (hAT-CM). PDAC CXCL5 secretion was induced by either IL-1β or TNF, but neutralization of both was required to limit secretion. Ablation of CXCL5 from tumors promoted an immune phenotype susceptible to PD-1 inhibitor therapy. While application of anti-PD-1 treatment to control tumors failed to alter tumor growth, knockout CXCL5 tumors were diminished. Conclusions In summary, our findings show that known adipokines TNF and IL-1β can stimulate CXCL5 release from PDAC cells in vitro. In vivo , CXCL5 depletion alone is sufficient to promote T cell infiltration into tumors in an obese setting, but requires checkpoint blockade inhibition to alleviate tumor burden. DATA AVAILABILITY STATEMENT Raw and processed RNAseq data will be further described in the GEO accession database ( awaiting approval from GEO for PRJ number ). Additional raw data is included in the supplemental material and available upon reasonable request. WHAT IS ALREADY KNOWN ON THIS TOPIC Obesity is linked to a worsened patient outcome and immunogenic tumor profile in PDAC. CXCR1/2 inhibitors have begun to be implemented in combination with immune checkpoint blockade therapies to promote T cell infiltration under the premise of targeting the myeloid rich TME. WHAT THIS STUDY ADDS Using in vitro/ex vivo cell and tissue culture-based assays with in vivo mouse models we have identified that adipose derived IL-1β and TNF can promote tumor secretion of CXCL5 which acts as a critical deterrent to CD8 T cell tumor infiltration, but loss of CXCL5 also leads to a more immune suppressive myeloid profile. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY This study highlights a mechanism and emphasizes the efficacy of single CXCR1/2 ligand targeting that could be beneficial to overcoming tumor immune-evasion even in the obese PDAC patient population.
Collapse
|
29
|
Rizk AA, Dybala MP, Rodriguez KC, Slak Rupnik M, Hara M. Pancreatic regional blood flow links the endocrine and exocrine diseases. J Clin Invest 2023; 133:e166185. [PMID: 37338995 PMCID: PMC10378168 DOI: 10.1172/jci166185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
An increasing number of studies have demonstrated that disease states of the endocrine or exocrine pancreas aggravate one another, which implies bidirectional blood flow between islets and exocrine cells. However, this is inconsistent with the current model of unidirectional blood flow, which is strictly from islets to exocrine tissues. This conventional model was first proposed in 1932, and it has never to our knowledge been revisited to date. Here, large-scale image capture was used to examine the spatial relationship between islets and blood vessels in the following species: human, monkey, pig, rabbit, ferret, and mouse. While some arterioles passed by or traveled through islets, the majority of islets had no association with them. Islets with direct contact with the arteriole were significantly larger in size and fewer in number than those without contact. Unique to the pancreas, capillaries directly branched out from the arterioles and have been labeled as "small arterioles" in past studies. Overall, the arterioles emerged to feed the pancreas regionally, not specifically targeting individual islets. Vascularizing the pancreas in this way may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to changes in the blood levels of glucose, hormones, and other circulating factors.
Collapse
Affiliation(s)
- Adam A. Rizk
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Michael P. Dybala
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Lilly AC, Astsaturov I, Golemis EA. Intrapancreatic fat, pancreatitis, and pancreatic cancer. Cell Mol Life Sci 2023; 80:206. [PMID: 37452870 PMCID: PMC10349727 DOI: 10.1007/s00018-023-04855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-β, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.
Collapse
Affiliation(s)
- Anna C Lilly
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Igor Astsaturov
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
31
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
32
|
Michalak N, Małecka-Wojciesko E. Modifiable Pancreatic Ductal Adenocarcinoma (PDAC) Risk Factors. J Clin Med 2023; 12:4318. [PMID: 37445352 DOI: 10.3390/jcm12134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
This study aims to summarize the modifiable risk factors for pancreatic ductal adenocarcinoma (PDAC) that have been known for a long time, as well as information from the most recent reports. As a cancer with a late diagnosis and poor prognosis, accurate analysis of PDAC risk factors is warranted. The incidence of this cancer continues to rise, and the five-year survival rate is the lowest with respect to other tumors. The influence of cigarette smoking, alcohol consumption, and chronic pancreatitis in increasing the risk of pancreatic ductal adenocarcinoma is continually being confirmed. There are also newly emerging reports relating to the impact of lifestyle, including physical activity, the gut and oral microbiome, and hepatotropic viruses. A precise understanding of PDAC risk factors can help to identify groups of high-risk patients, and this may contribute to population awareness and education as well as earlier diagnoses with possible better treatment outcomes.
Collapse
Affiliation(s)
- Natalia Michalak
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
33
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
34
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
35
|
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell 2023; 186:1541-1563. [PMID: 37059064 DOI: 10.1016/j.cell.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.
Collapse
Affiliation(s)
- Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
36
|
Wang G, Gao H, Dai S, Gao Y, Yin L, Li M, Zhang K, Zhang J, Jiang K, Miao Y, Lu Z. Metformin inhibits neutrophil extracellular traps-promoted pancreatic carcinogenesis in obese mice. Cancer Lett 2023; 562:216155. [PMID: 37030634 DOI: 10.1016/j.canlet.2023.216155] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Obesity has been linked to a higher risk of pancreatic cancer. However, the mechanism by which obesity promote pancreatic carcinogenesis is still unclear. We investigated the effect of obesity on pancreatic carcinogenesis in Pdx1-Cre; LSL-KrasG12D+/- (KC) mice. Metformin was administrated to rescue the effects of obesity and NETs. The pro-tumorigenic effects of neutrophil extracellular traps (NETs) were further evaluated in vivo and vitro. We found that obesity significantly promoted the progression of murine pancreatic ductal intraepithelial neoplasia (mPanIN). The proliferation rate and epithelial-mesenchymal transition (EMT) of mPanIN ductal cells were increased in obese mice. More visceral adipocytes, PD-L1+ neutrophil infiltration and NETs formation were found in the pancreas of obese mice and visceral adipocytes could recruit neutrophils and promote NETs formation. The latter could induce an inflammatory response in ductal cells via TLR4-dependent pathways both in vivo and vitro, as demonstrated by upregulation of IL-1β. Metformin and DNase I significantly reversed the pro-tumorigenic effects of obesity and NETs in vivo and in vitro. Our study provides causal evidence for the contribution of obesity in promoting pancreatic carcinogenesis in genetic model and reveals the mechanism by NETs to regulate mPanIN progression.
Collapse
Affiliation(s)
- Guangfu Wang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Hao Gao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Yong Gao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Lingdi Yin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Mingna Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Kai Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Jingjing Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China; Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China.
| | - Zipeng Lu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
37
|
Mastracci TL, Apte M, Amundadottir LT, Alvarsson A, Artandi S, Bellin MD, Bernal-Mizrachi E, Caicedo A, Campbell-Thompson M, Cruz-Monserrate Z, El Ouaamari A, Gaulton KJ, Geisz A, Goodarzi MO, Hara M, Hull-Meichle RL, Kleger A, Klein AP, Kopp JL, Kulkarni RN, Muzumdar MD, Naren AP, Oakes SA, Olesen SS, Phelps EA, Powers AC, Stabler CL, Tirkes T, Whitcomb DC, Yadav D, Yong J, Zaghloul NA, Pandol SJ, Sander M. Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases: Workshop Proceedings. Diabetes 2023; 72:433-448. [PMID: 36940317 PMCID: PMC10033248 DOI: 10.2337/db22-0942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 03/22/2023]
Abstract
The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.
Collapse
Affiliation(s)
- Teresa L. Mastracci
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Minoti Apte
- Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | | | - Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Mount Sinai Hospital, New York, NY
| | - Steven Artandi
- Department of Internal Medicine, Stanford University, Stanford, CA
| | - Melena D. Bellin
- Departments of Pediatrics and Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Kyle J. Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Rebecca L. Hull-Meichle
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University, Ulm, Germany
| | - Alison P. Klein
- Department of Pathology and Medicine, Johns Hopkins School of Medicine, Baltimore MD
| | - Janel L. Kopp
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, Canada
| | | | - Mandar D. Muzumdar
- Departments of Genetics and Internal Medicine (Oncology), Yale University School of Medicine, New Haven, CT
| | | | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Søren S. Olesen
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Alvin C. Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | | | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Norann A. Zaghloul
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Stephen J. Pandol
- Department of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Maike Sander
- Department of Pediatrics and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
38
|
Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, Kuan FC, Marongiu F, Evans EJ, Moore DA, Rodrigues FS, Pich O, Bakker B, Cha H, Myers R, van Maldegem F, Boumelha J, Veeriah S, Rowan A, Naceur-Lombardelli C, Karasaki T, Sivakumar M, De S, Caswell DR, Nagano A, Black JRM, Martínez-Ruiz C, Ryu MH, Huff RD, Li S, Favé MJ, Magness A, Suárez-Bonnet A, Priestnall SL, Lüchtenborg M, Lavelle K, Pethick J, Hardy S, McRonald FE, Lin MH, Troccoli CI, Ghosh M, Miller YE, Merrick DT, Keith RL, Al Bakir M, Bailey C, Hill MS, Saal LH, Chen Y, George AM, Abbosh C, Kanu N, Lee SH, McGranahan N, Berg CD, Sasieni P, Houlston R, Turnbull C, Lam S, Awadalla P, Grönroos E, Downward J, Jacks T, Carlsten C, Malanchi I, Hackshaw A, Litchfield K, DeGregori J, Jamal-Hanjani M, Swanton C. Lung adenocarcinoma promotion by air pollutants. Nature 2023; 616:159-167. [PMID: 37020004 PMCID: PMC7614604 DOI: 10.1038/s41586-023-05874-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023]
Abstract
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.
Collapse
Affiliation(s)
- William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Marcellus Augustine
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Kezhong Chen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Thoracic Surgery and Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Edward J Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Hongui Cha
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Renelle Myers
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Swapnanil De
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Min Hyung Ryu
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Shijia Li
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | | | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Margreet Lüchtenborg
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
- Centre for Cancer, Society and Public Health, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Katrina Lavelle
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Joanna Pethick
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Steven Hardy
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Fiona E McRonald
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Clara I Troccoli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Flagship Biosciences, Boulder, CO, USA
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Lao H Saal
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Yilun Chen
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anthony M George
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Peter Sasieni
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Stephen Lam
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Awadalla
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
39
|
Soret B, Hense J, Lüdtke S, Thale I, Schwab A, Düfer M. Pancreatic K Ca3.1 channels in health and disease. Biol Chem 2023; 404:339-353. [PMID: 36571487 DOI: 10.1515/hsz-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/24/2022] [Indexed: 12/27/2022]
Abstract
Ion channels play an important role for regulation of the exocrine and the endocrine pancreas. This review focuses on the Ca2+-regulated K+ channel KCa3.1, encoded by the KCNN4 gene, which is present in both parts of the pancreas. In the islets of Langerhans, KCa3.1 channels are involved in the regulation of membrane potential oscillations characterizing nutrient-stimulated islet activity. Channel upregulation is induced by gluco- or lipotoxic conditions and might contribute to micro-inflammation and impaired insulin release in type 2 diabetes mellitus as well as to diabetes-associated renal and vascular complications. In the exocrine pancreas KCa3.1 channels are expressed in acinar and ductal cells. They are thought to play a role for anion secretion during digestion but their physiological role has not been fully elucidated yet. Pancreatic carcinoma, especially pancreatic ductal adenocarcinoma (PDAC), is associated with drastic overexpression of KCa3.1. For pharmacological targeting of KCa3.1 channels, we are discussing the possible benefits KCa3.1 channel inhibitors might provide in the context of diabetes mellitus and pancreatic cancer, respectively. We are also giving a perspective for the use of a fluorescently labeled derivative of the KCa3.1 blocker senicapoc as a tool to monitor channel distribution in pancreatic tissue. In summary, modulating KCa3.1 channel activity is a useful strategy for exo-and endocrine pancreatic disease but further studies are needed to evaluate its clinical suitability.
Collapse
Affiliation(s)
- Benjamin Soret
- University of Münster, Institute of Physiology II, Robert-Koch-Straße 27b, D-48149 Münster, Germany
| | - Jurek Hense
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| | - Simon Lüdtke
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| | - Insa Thale
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Corrensstraße 48, D-48149 Münster, Germany
| | - Albrecht Schwab
- University of Münster, Institute of Physiology II, Robert-Koch-Straße 27b, D-48149 Münster, Germany
| | - Martina Düfer
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
40
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
41
|
Zhang BT, Xu JY, Wang W, Zeng Y, Jiang J. Obesity and cancer: Mouse models used in studies. Front Oncol 2023; 13:1125178. [PMID: 37007087 PMCID: PMC10061215 DOI: 10.3389/fonc.2023.1125178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
There is increasing evidence that obesity is associated with the occurrence and development of malignant tumors. When studying the relationship between obesity and malignant tumors, it is very important to choose an appropriate animal model. However, BALB/c nude mice and other animals commonly used to study tumor xenograft (human-derived tumor cell lines) transplantation models are difficult to induce obesity, while C57BL/6 mice and other model animals commonly used for obesity research are not suitable for tumor xenograft transplantation. Therefore, it is difficult to replicate both obesity and malignancy in animal models at the same time. This review summarizes several experimental animal models and protocols that can simultaneously induce obesity and tumor xenografts.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia-Ying Xu
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Zeng
- Department of Orthodontic, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- *Correspondence: Jun Jiang, ; Yang Zeng,
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Jiang, ; Yang Zeng,
| |
Collapse
|
42
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
43
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
44
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
45
|
Pesticides and pancreatic adenocarcinoma: A transversal epidemiological, environmental and mechanistic narrative review. Dig Liver Dis 2022; 54:1605-1613. [PMID: 36089524 DOI: 10.1016/j.dld.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/23/2023]
Abstract
Pancreatic adenocarcinoma (PA) incidence is rising worldwide, especially in France. The evolution of known risk factors such as tobacco smoking, obesity, type 2 diabetes, chronic pancreatitis, or constitutional mutations is not sufficient to explain this trend. Pesticides are known risk factors in other malignancies. Previous studies have outlined pesticides' influence in PA, such as dichlorodiphenyltrichloroethane as plausible risk factors. The general population is directly or indirectly exposed to pesticides through air, food or water. Some of these chemicals may accumulate in the body all along lifetime and may harm carriers. The toxic mixing effects of these chemicals are not well documented. Several hypotheses have been put forward to explain how pesticides can induce indirect (fatty pancreas, induced diabetes) or direct (oxidative stress, cell damage) carcinogenesis in pancreatic cells through inflammation. A strong corpus exists acknowledging pesticides as a PA risk factor. However, published studies do not provide a sufficient level of evidence to prove causality and current prospective case-control studies are still ongoing.
Collapse
|
46
|
Yuan S, Stewart KS, Yang Y, Abdusselamoglu MD, Parigi SM, Feinberg TY, Tumaneng K, Yang H, Levorse JM, Polak L, Ng D, Fuchs E. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 2022; 612:555-563. [PMID: 36450983 PMCID: PMC9750880 DOI: 10.1038/s41586-022-05475-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFβ signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Katherine S Stewart
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Merve Deniz Abdusselamoglu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Tamar Y Feinberg
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Volastra Therapeutics, New York, NY, USA
| | - Karen Tumaneng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Sanofi, Cambridge, MA, USA
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - John M Levorse
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Temple University, Philadelphia, PA, USA
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - David Ng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
47
|
Li L, Yu XJ, Gao L, Cheng L, Sun B, Wang G. Diabetic Ferroptosis and Pancreatic Cancer: Foe or Friend? Antioxid Redox Signal 2022; 37:1206-1221. [PMID: 35996983 DOI: 10.1089/ars.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Pancreatic cancer and diabetes have a reciprocal causation relationship. As a potential risk factor, diabetes increases morbidity and promotes pancreatic cancer progression. The main mechanisms include islet dysfunction-induced systemic metabolic disorder, pancreatic stellate cell activation, and immunosuppression. Ferroptosis is regarded as regulated cell death, which participates in chemotherapy resistance and is refractory to radiation therapy and immunotherapy. Diabetes-induced ferroptosis causes many complications, but the underlying mechanism of diabetes-related ferroptosis in pancreatic cancer has not been discussed. Recent Advances: Ferroptosis alleviates pancreatic intraepithelial neoplasia (PanIN) progression by activating chronic inflammation. The specific drugs that cause ferroptosis achieve tumor suppression by inducing lipid peroxidation. Ferroptosis plays pro and con roles in cancer. Both the ferroptosis inhibitor and inducer exhibit antitumor effects through killing cancer cells or directly affecting tumor growth. Diabetes-induced ferroptosis contributes to tumor cell death by different components, including tumor cells, fibroblasts, immune cells, and adipocytes. A better understanding of its role in modulating the tumor microenvironment will reveal diabetes-associated ferroptotic features in cancer development, which can be used to figure out possible treatment strategies for cancer patients with hyperglycemia. Critical Issues: We demonstrate the potential roles of diabetes-related ferroptosis in pancreatic cancer progression and discuss ferroptosis-related antitumor effects and therapeutics for pancreatic cancer treatment. Future Directions: Further studies are required to highlight mechanisms of diabetes-mediated ferroptosis in pancreatic cancer tumorigenesis and progression. The antitumor effects of ferroptosis regulators combined with chemotherapy, targeted therapy, or immunotherapy in diabetic patients should be investigated. We hope that pancreatic cancer patients with diabetes will benefit from ferroptosis-related therapies. Antioxid. Redox Signal. 37, 1206-1221.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Jia Yu
- Department of Centric Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Bulsei J, Chierici A, Alifano M, Castaldi A, Drai C, De Fatico S, Rosso E, Fontas E, Iannelli A. Bariatric surgery reduces the risk of pancreatic cancer in individuals with obesity before the age of 50 years: A nationwide administrative data study in France. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2022; 49:788-793. [PMID: 36376141 DOI: 10.1016/j.ejso.2022.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Obesity is a well-established risk factor for pancreatic cancer. Bariatric surgery has demonstrated superior results in terms of weight loss and obesity-related comorbidities compared to medical and behavioral treatments. The aim of this study is to evaluate the effect of bariatric surgery on pancreatic cancer incidence in individuals with obesity. METHOD Individuals with a diagnosis of obesity were retrieved from the French national hospital discharge database. We conducted a cohort study comparing the risk to develop pancreatic cancer in individuals with obesity with and without history of bariatric surgery; the inverse probability of treatment weighting (IPTW) method was performed to assess the uncertainty around the results. Moreover, a subgroup analysis according to age at the time of bariatric surgery was performed to study its impact on the risk of pancreatic cancer. Finally, possible differences depending on the type of bariatric procedure (sleeve gastrectomy vs Roux-en-Y gastric bypass) were also explored. RESULTS 160,129 (Bariatric Surgery group) and 1,263,804 (control group) patients with 5.2 ± 1.9 and 6.0 ± 1.9 years of follow-up respectively were included. A significant reduced risk to develop pancreatic cancer during follow-up was identified for the bariatric surgery group in the overall population (HR: 0.567). However, this reduced risk was only observed in the 18-50 years group. These results were furtherly confirmed after IPTW analysis. No difference was found between different bariatric procedures. CONCLUSION Bariatric surgery has a protective effect against pancreatic cancer in the 18-50 years population. High-quality prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Julie Bulsei
- Centre Hospitalier Universitaire de Nice, Department of Clinical Research and Innovation, Université Côte d'Azur, Nice, France
| | - Andrea Chierici
- Service de Chirurgie Digestive, Centre Hospitalier d'Antibes Juan-les-Pins, 107, av. de Nice, 06600, Antibes, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, France; INSERM U1138 Team «Cancer, Immune Control, and Escape», Cordeliers Research Center, University of Paris, France
| | - Antonio Castaldi
- Centre Hospitalier Universitaire de Nice - Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Nice, France
| | - Céline Drai
- Centre Hospitalier Universitaire de Nice - Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Nice, France; Université Côte d'Azur, Nice, France
| | - Serena De Fatico
- Centre Hospitalier Universitaire de Nice - Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Nice, France
| | - Edoardo Rosso
- Unité des Maladies de l'Appareil Digestif et Endocrine, Department of Surgery and Robotics, Centre Hospitalier de Luxembourg, L-1210 Luxembourg, Luxembourg
| | - Eric Fontas
- Centre Hospitalier Universitaire de Nice, Department of Clinical Research and Innovation, Université Côte d'Azur, Nice, France
| | - Antonio Iannelli
- Centre Hospitalier Universitaire de Nice - Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Nice, France; Université Côte d'Azur, Nice, France; Inserm, U1065, Team 8 "Hepatic complications of obesity and alcohol", France.
| |
Collapse
|
49
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Druk IV. Pancreatic cancer, pancreatogenic diabetes, type 2 diabetes mellitus. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2022:171-182. [DOI: 10.31146/1682-8658-ecg-205-9-171-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of death among all types of cancer. PC is very aggressive with a low 5-year overall survival rate. The highest prevalence of diabetes mellitus (DM), significantly exceeding the average population, is registered among patients with prostate cancer Recommendations for systemic screening of patients with diabetes for the detection of PC are not standardized. The purpose of this review is to present an analysis of current literature data on pathogenetic relationships between DM and PC and prospects for PC screening. Research data indicate that there is a bidirectional relationship between DM and PC, in which DM can act either as a risk factor for PC or as a marker of paraneoplastic syndrome of PC. In the differential diagnosis of type 2 diabetes, pancreatogenic diabetes and diabetes associated with PC, a set of clinical signs can be used. Patients with DM who have additional signs/symptoms of increased risk can be considered as a group subject to mandatory screening. Numerous studies of various proteomic, metabolomic, genetic and transcriptomic biomarkers PC have been published. The search for an easy-to-use clinically useful and cost-effective PC marker is still ongoing.
Collapse
|