1
|
Sun D, Zhu K, Wang L, Mu Z, Wu K, Hua L, Qin B, Gao X, Wang Y, Cui S. Nucleic acid-induced NADase activation of a short Sir2-associated prokaryotic Argonaute system. Cell Rep 2024; 43:114391. [PMID: 38923459 DOI: 10.1016/j.celrep.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.
Collapse
Affiliation(s)
- Dapeng Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Hua
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Medical School, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Yumei Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| |
Collapse
|
2
|
Gao Y, Guo L, Wang F, Wang Y, Li P, Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review. Cytotherapy 2024; 26:11-24. [PMID: 37930294 DOI: 10.1016/j.jcyt.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.
Collapse
Affiliation(s)
- Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linlin Guo
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W, Cui S. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute. Nature 2024; 625:822-831. [PMID: 37783228 DOI: 10.1038/s41586-023-06665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Kun Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Medical School, Yan'an University, Yan'an, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China.
| |
Collapse
|
4
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
5
|
Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Grybauskas A, Gražulis S, Zaremba M. Structural basis for sequence-specific recognition of guide and target strands by the Archaeoglobus fulgidus Argonaute protein. Sci Rep 2023; 13:6123. [PMID: 37059709 PMCID: PMC10104839 DOI: 10.1038/s41598-023-32600-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Argonaute (Ago) proteins are found in all three domains of life. The best-characterized group is eukaryotic Argonautes (eAgos). Being the structural core of RNA interference machinery, they use guide RNA molecules for RNA targeting. Prokaryotic Argonautes (pAgos) are more diverse, both in terms of structure (there are eAgo-like 'long' and truncated 'short' pAgos) and mechanism, as many pAgos are specific for DNA, not RNA guide and/or target strands. Some long pAgos act as antiviral defence systems. Their defensive role was recently demonstrated for short pAgo-encoding systems SPARTA and GsSir2/Ago, but the function and action mechanisms of all other short pAgos remain unknown. In this work, we focus on the guide and target strand preferences of AfAgo, a truncated long-B Argonaute protein encoded by an archaeon Archaeoglobus fulgidus. We demonstrate that AfAgo associates with small RNA molecules carrying 5'-terminal AUU nucleotides in vivo, and characterize its affinity to various RNA and DNA guide/target strands in vitro. We also present X-ray structures of AfAgo bound to oligoduplex DNAs that provide atomic details for base-specific AfAgo interactions with both guide and target strands. Our findings broaden the range of currently known Argonaute-nucleic acid recognition mechanisms.
Collapse
Affiliation(s)
- Elena Manakova
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Edvardas Golovinas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Reda Pocevičiūtė
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Algirdas Grybauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Saulius Gražulis
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
6
|
Leitão AL, Enguita FJ. A Structural View of miRNA Biogenesis and Function. Noncoding RNA 2022; 8:ncrna8010010. [PMID: 35202084 PMCID: PMC8874510 DOI: 10.3390/ncrna8010010] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
Micro-RNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of gene expression. Since their discovery in 1993, they have been the subject of deep study due to their involvement in many important biological processes. Compared with other ncRNAs, miRNAs are generated from devoted transcriptional units which are processed by a specific set of endonucleases. The contribution of structural biology methods for understanding miRNA biogenesis and function has been essential for the dissection of their roles in cell biology and human disease. In this review, we summarize the application of structural biology for the characterization of the molecular players involved in miRNA biogenesis (processors and effectors), starting from the X-ray crystallography methods to the more recent cryo-electron microscopy protocols.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
7
|
Yang X, Jiang J, Li Z, Liang J, Xiang Y. Strategies for mitochondrial gene editing. Comput Struct Biotechnol J 2021; 19:3319-3329. [PMID: 34188780 PMCID: PMC8202187 DOI: 10.1016/j.csbj.2021.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria, as the energy factory of cells, participate in metabolism processes and play a critical role in the maintenance of human life activities. Mitochondria belong to semi-automatic organelles, which have their own genome different from nuclear genome. Mitochondrial DNA (mtDNA) mutations can cause a series of diseases and threaten human health. However, an effective approach to edit mitochondrial DNA, though long-desired, is lacking. In recent years, gene editing technologies, represented by restriction endonucleases (RE) technology, zinc finger nuclease (ZFN) technology, transcription activator-like effector nuclease (TALEN) technology, CRISPR system and pAgo-based system have been comprehensively explored, but the application of these technologies in mitochondrial gene editing is still to be explored and optimized. The present study highlights the progress and limitations of current mitochondrial gene editing technologies and approaches, and provides insights for development of novel strategies for future attempts.
Collapse
Affiliation(s)
- Xingbo Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiacheng Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayi Liang
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yaozu Xiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai East Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|