1
|
Olson CS, Schulz NG, Ragsdale CW. Neuronal segmentation in cephalopod arms. Nat Commun 2025; 16:443. [PMID: 39814765 PMCID: PMC11736069 DOI: 10.1038/s41467-024-55475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented. In transverse cross sections, the ANC cell body layer wraps around the neuropil with no apparent segregation of sensory and motor neurons. In longitudinal sections, however, ANC neurons form segments, setting up a modular organization to the adjoining neuropil. ANC nerves exit in the septa between segments, and for each sucker, form a spatial topographic map ("suckerotopy"). A strong link between ANC segmentation and flexible sucker-laden arms is confirmed by comparative study of squid arms and tentacles. These ANC modules offer a template for modeling the motor control of soft tissues and provide a compelling example of nervous system segmentation in molluscs.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL, USA.
| | - Natalie Grace Schulz
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Clifton W Ragsdale
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Chen X, Luo Y, Chen Y, Li S, Deng S, Wang B, Zhang Q, Li X, Li X, Wang C, He J, Tian H, Shao J. Biomimetic Contact Behavior Inspired Tactile Sensing Array with Programmable Microdomes Pattern by Scalable and Consistent Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408082. [PMID: 39319637 DOI: 10.1002/advs.202408082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Flexible sensor arrays have attracted extensive attention in human-computer interaction. However, realizing high-performance sensor units with programmable properties, and expanding them to multi-pixel flexible arrays to maintain high sensing consistency is still struggling. Inspired by the contact behavior of octopus antenna, this paper proposes a programmable multistage dome structure-based flexible sensing array with robust sensing stability and high array consistency. The biomimetic multistage dome structure is pressurized to gradually contact the electrode to achieve high sensitivity and a large pressure range. By adjusting the arrangement of the multistage dome structure, the pressure range and sensitivity can be customized. More importantly, this biomimetic structure can be expanded to a multi-pixel sensor array at the wafer level with high consistency through scalable and high-precision imprinting technologies. In the imprinting process, the conductive layer is conformally embedded into the multistage dome structure to improve the stability (maintain stability over 22 000 cycles). In addition, the braced isolation structure is designed to effectively improve the anti-crosstalk performance of the sensor array (crosstalk coefficient: 26.62 dB). Benefitting from the programmable structural design and high-precision manufacturing process, the sensor array can be customized and is demonstrated to detect human musculation in medical rehabilitation applications.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Interdisciplinary Research Center of Frontier science and technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yizhuo Luo
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yun Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Sheng Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shizheng Deng
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qi Zhang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiangmeng Li
- Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Interdisciplinary Research Center of Frontier science and technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Interdisciplinary Research Center of Frontier science and technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Juan He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Interdisciplinary Research Center of Frontier science and technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Interdisciplinary Research Center of Frontier science and technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
3
|
Neacsu D, Crook RJ. Repeating ultrastructural motifs provide insight into the organization of the octopus arm nervous system. Curr Biol 2024; 34:4767-4773.e2. [PMID: 39326412 DOI: 10.1016/j.cub.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
The peripheral nervous system of the octopus is among the most complex of any animal. In each arm, hundreds of serial ganglia form a central core of nervous tissue processing sensory input, issuing motor commands, and exchanging information with the central brain.1,2,3,4,5 In addition to the central cord, there are two other types of neural elements: fine intramuscular nerve cords (INCs)6,7 and small sucker ganglia at the base of each sucker.2,6,8,9 Connections between these different elements and the structural organization of the arm nervous system remain poorly understood, despite decades of interest and a more recent explosion of studies of the cephalopod nervous system.8,10,11,12,13,14,15 Here, we use serial blockface electron microscopy to reconstruct large volumes of an arm from Octopus bocki at the base and toward the tip, mapping connections between the various neural elements and their relationship to the muscle and skin. We show that the ganglia follow an alternating mirror-image pattern along the arm, where the left or right-sided location of successive suckers determines ganglionic orientation. We also describe previously unrecognized patterns in (1) continuity of oblique connectives between the INCs that encircle the arm; (2) repeatable structures of the major blood vessel branches and nerve connectives within each ganglion; (3) clustering of rare, unusually large neurons within the cell body layers; and (4) division of the cortex into repeating columns. These new findings from the first 3DEM reconstruction of the arm should greatly facilitate future studies of octopus neurobiology, particularly sensori-motor integration and arm control.
Collapse
Affiliation(s)
- Diana Neacsu
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
4
|
Zimmer RK, Ferrier GA, Zimmer CA. Finding food: how generalist predators use contact-chemosensory information to guide prey preferences. J Exp Biol 2024; 227:jeb247523. [PMID: 39246153 PMCID: PMC11491814 DOI: 10.1242/jeb.247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Understanding the processes that guide carnivores in finding and selecting prey is a fundamental, unresolved challenge in sensory biology. To our knowledge, no published work has yet revealed the complete structural identities of compounds that cue preferences by generalist predators for different prey species. With this research imperative in mind, we determined the chemistry driving consumer preferences for live intact prey using two generalist predatory species (sea stars, Pisaster ochraceus; whelks, Acanthinucella spirata), along with two foundation prey species (mussels, Mytilus californianus; barnacles, Balanus glandula), inhabiting rocky, wave-swept shores. Each prey species is known to secrete either a 29.6 kDa (named 'KEYSTONEin') or a 199.6 kDa (named 'MULTIFUNCin') glycoprotein as a contact-chemical cue. Here, experimental manipulations utilized faux prey consisting of cleaned barnacle or mussel shells infused with KEYSTONEin, MULTIFUNCin or seawater (control) gels. Whelks exhibited a strong penchant for MULTIFUNCin over KEYSTONEin, irrespective of shell type. In contrast, sea stars generally preferred KEYSTONEin over MULTIFUNCin, but this preference shifted depending on the experimental context in which they encountered physical (shell) and chemical (glycoprotein) stimuli. This study ultimately demonstrates clear and contrasting chemical preferences between sea stars and whelks. It highlights the importance of experimental setting in determining chemical preferences. Finally, it shows that prey preferences by these predators hinge only on one or two contact-protein cues, without the need for quality coding via fluid-borne compounds, low-molecular-weight substances or mixture blends.
Collapse
Affiliation(s)
- Richard K. Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of the Environment, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| | - Graham A. Ferrier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cheryl A. Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of the Environment, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| |
Collapse
|
5
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
6
|
Buresch KC, Huget ND, Brister WC, Zhou EY, Lineaweaver AS, Rifai C, Hu J, Stevenson ZE, Boal JG, Hanlon RT. Evidence for tactile 3D shape discrimination by octopus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:815-823. [PMID: 38472410 DOI: 10.1007/s00359-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Octopuses integrate visual, chemical and tactile sensory information while foraging and feeding in complex marine habitats. The respective roles of these modes are of interest ecologically, neurobiologically, and for development of engineered soft robotic arms. While vision guides their foraging path, benthic octopuses primarily search "blindly" with their arms to find visually hidden prey amidst rocks, crevices and coral heads. Each octopus arm is lined with hundreds of suckers that possess a combination of chemo- and mechanoreceptors to distinguish prey. Contact chemoreception has been demonstrated in lab tests, but mechanotactile sensing is less well characterized. We designed a non-invasive live animal behavioral assay that isolated mechanosensory capabilities of Octopus bimaculoides arms and suckers to discriminate among five resin 3D-printed prey and non-prey shapes (all with identical chemical signatures). Each shape was introduced inside a rock dome and was only accessible to the octopus' arms. Octopuses' responses were variable. Young octopuses discriminated the crab prey shape from the control, whereas older octopuses did not. These experiments suggest that mechanotactile sensing of 3D shapes may aid in prey discrimination; however, (i) chemo-tactile information may be prioritized over mechanotactile information in prey discrimination, and (ii) mechanosensory capability may decline with age.
Collapse
Affiliation(s)
- Kendra C Buresch
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA.
| | - Noelle D Huget
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - William C Brister
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - Elaine Y Zhou
- Biological Sciences Division, University of Chicago, 5801 S. Ellis Ave, Chicago, IL, USA
| | - Abraham S Lineaweaver
- College of Natural Sciences, University of Massachusetts Amherst, 37 Mather Drive, Amherst, MA, USA
| | - Chloe Rifai
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - Jinyang Hu
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - Zoe E Stevenson
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - Jean G Boal
- College of Science and Technologies, Millersville University, 40 Dilworth Rd, Millersville, PA, USA
| | - Roger T Hanlon
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA
| |
Collapse
|
7
|
van Veggel S, Wiertlewski M, Doubrovski EL, Kooijman A, Shahabi E, Mazzolai B, Scharff RBN. Classification and Evaluation of Octopus-Inspired Suction Cups for Soft Continuum Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400806. [PMID: 38874316 PMCID: PMC11321698 DOI: 10.1002/advs.202400806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Indexed: 06/15/2024]
Abstract
The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion under non-ideal contact conditions, and integration into fully soft systems. The octopus can serve as an important source of inspiration for addressing these challenges. This review aims to accelerate research in octopus-inspired suction cups by providing a detailed analysis of the octopus sucker, determining meaningful performance metrics for suction cups on the basis of this analysis, and evaluating the state-of-the-art in suction cups according to these performance metrics. In total, 47 records describing suction cups are found, classified according to the deployed actuation method, and evaluated on performance metrics reflecting the level of sensorization, adhesion, and integration. Despite significant advances in recent years, the octopus sucker outperforms all suction cups on all performance metrics. The realization of high resolution tactile sensing in suction cups and the integration of such sensorized suction cups in soft continuum structures are identified as two major hurdles toward the realization of octopus-inspired manipulation strategies in soft continuum robot arms.
Collapse
Affiliation(s)
- Stein van Veggel
- Department of Sustainable Design EngineeringDelft University of TechnologyDelft2628 CEThe Netherlands
- Cognitive Robotics DepartmentDelft University of TechnologyDelft2628 CDThe Netherlands
| | - Michaël Wiertlewski
- Cognitive Robotics DepartmentDelft University of TechnologyDelft2628 CDThe Netherlands
| | - Eugeni L. Doubrovski
- Department of Sustainable Design EngineeringDelft University of TechnologyDelft2628 CEThe Netherlands
| | - Adrie Kooijman
- Department of Sustainable Design EngineeringDelft University of TechnologyDelft2628 CEThe Netherlands
| | - Ebrahim Shahabi
- Bioinspired Soft Robotics LaboratoryIstituto Italiano di TecnologiaGenoa16163Italy
| | - Barbara Mazzolai
- Bioinspired Soft Robotics LaboratoryIstituto Italiano di TecnologiaGenoa16163Italy
| | - Rob B. N. Scharff
- Bioinspired Soft Robotics LaboratoryIstituto Italiano di TecnologiaGenoa16163Italy
- Division of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayHong KongChina
| |
Collapse
|
8
|
Olson CS, Schulz NG, Ragsdale CW. Neuronal segmentation in cephalopod arms. RESEARCH SQUARE 2024:rs.3.rs-4548192. [PMID: 39011093 PMCID: PMC11247938 DOI: 10.21203/rs.3.rs-4548192/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The prehensile arms of the cephalopod are among these animals' most remarkable features, but little is known about the neural circuitry governing arm and sucker movements1,2. Here, we investigated the cellular and molecular organization of the arm nervous system, focusing on the massive axial nerve cords (ANCs) in the octopus arms which collectively harbor four times as many neurons as the central brain3. We found that the ANC is segmented. In transverse cross sections, the ANC cell body layer wraps around the neuropil with no apparent segregation of sensory and motor neurons. In longitudinal sections, however, ANC neurons form segments, setting up a modular organization to the adjoining ANC neuropil. The septa between each segment are, in contrast, neuron-poor but contain nerve exits, vasculature and abundant collagen. Surprisingly, nerves exiting from neighboring septa differ in their fiber trajectories indicating that multiple adjoining segments must cooperate to innervate the arm musculature fully. The nerves for each sucker also exit through septa and set up a spatial "suckerotopy" in the ANC. A strong link between ANC segmentation and flexible sucker-laden arms was confirmed by comparative study of squid arms and tentacles. The ANC segmental modules represent a new template for understanding the motor control of octopus soft tissues. They also provide the first example of nervous system segmentation in a mollusc4.
Collapse
Affiliation(s)
- Cassady S. Olson
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL 60637
| | - Natalie Grace Schulz
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Clifton W. Ragsdale
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Hoyer J, Kolar K, Athira A, van den Burgh M, Dondorp D, Liang Z, Chatzigeorgiou M. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae. Curr Biol 2024; 34:1168-1182.e7. [PMID: 38335959 DOI: 10.1016/j.cub.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
The Earth's oceans brim with an incredible diversity of microscopic lifeforms, including motile planktonic larvae, whose survival critically depends on effective dispersal in the water column and subsequent exploration of the seafloor to identify a suitable settlement site. How their nervous systems mediate sensing of diverse multimodal cues remains enigmatic. Here, we uncover that the tunicate Ciona intestinalis larvae employ ectodermal sensory cells to sense various mechanical and chemical cues. Combining whole-brain imaging and chemogenetics, we demonstrate that stimuli encoded at the periphery are sufficient to drive global brain-state changes to promote or impede both larval attachment and metamorphosis behaviors. The ability of C. intestinalis larvae to leverage polymodal sensory perception to support information coding and chemotactile behaviors may explain how marine larvae make complex decisions despite streamlined nervous systems.
Collapse
Affiliation(s)
- Jorgen Hoyer
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Kushal Kolar
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Athira Athira
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Meike van den Burgh
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Daniel Dondorp
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Zonglai Liang
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Marios Chatzigeorgiou
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway.
| |
Collapse
|
10
|
Kong Z, Boahen EK, Kim DJ, Li F, Kim JS, Kweon H, Kim SY, Choi H, Zhu J, Bin Ying W, Kim DH. Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains. Nat Commun 2024; 15:2129. [PMID: 38459042 PMCID: PMC10923942 DOI: 10.1038/s41467-024-46334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
The development of advanced materials capable of autonomous self-healing and mechanical stimulus sensing in aquatic environments holds great promise for applications in underwater soft electronics, underwater robotics, and water-resistant human-machine interfaces. However, achieving superior autonomous self-healing properties and effective sensing simultaneously in an aquatic environment is rarely feasible. Here, we present an ultrafast underwater molecularly engineered self-healing piezo-ionic elastomer inspired by the cephalopod's suckers, which possess self-healing properties and mechanosensitive ion channels. Through strategic engineering of hydrophobic C-F groups, hydrolytic boronate ester bonds, and ions, the material achieves outstanding self-healing efficiencies, with speeds of 94.5% (9.1 µm/min) in air and 89.6% (13.3 µm/min) underwater, coupled with remarkable pressure sensitivity (18.1 kPa-1) for sensing performance. Furthermore, integration of this mechanosensitive device into an underwater submarine for signal transmission and light emitting diode modulation demonstrates its potential for underwater robotics and smarter human-machine interactions.
Collapse
Affiliation(s)
- Zhengyang Kong
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Elvis K Boahen
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Fenglong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - So Young Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wu Bin Ying
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
11
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Olson CS, Ragsdale CW. Toward an Understanding of Octopus Arm Motor Control. Integr Comp Biol 2023; 63:1277-1284. [PMID: 37327080 PMCID: PMC10755184 DOI: 10.1093/icb/icad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Octopuses have the extraordinary ability to control eight prehensile arms with hundreds of suckers. With these highly flexible limbs, they engage in a wide variety of tasks, including hunting, grooming, and exploring their environment. The neural circuitry generating these movements engages every division of the octopus nervous system, from the nerve cords of the arms to the supraesophegeal brain. In this review, the current knowledge on the neural control of octopus arm movements is discussed, highlighting open questions and areas for further study.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago 60637, USA
| | | |
Collapse
|
13
|
Chaung K, Baharav TZ, Henderson G, Zheludev IN, Wang PL, Salzman J. SPLASH: A statistical, reference-free genomic algorithm unifies biological discovery. Cell 2023; 186:5440-5456.e26. [PMID: 38065078 PMCID: PMC10861363 DOI: 10.1016/j.cell.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect a signature of regulation: sample-specific sequence variation. SPLASH detects many types of variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single-cell level, detects the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive discovery without metadata or references.
Collapse
Affiliation(s)
- Kaitlin Chaung
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tavor Z Baharav
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - George Henderson
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Peter L Wang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Salzman
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Department of Statistics (by courtesy), Stanford University, Stanford, CA 94305, USA; Department of Biology (by courtesy), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Sivitilli DM, Strong T, Weertman W, Ullmann J, Smith JR, Gire DH. Mechanisms of octopus arm search behavior without visual feedback. BIOINSPIRATION & BIOMIMETICS 2023; 18:066017. [PMID: 37793413 DOI: 10.1088/1748-3190/ad0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The octopus coordinates multiple, highly flexible arms with the support of a complex distributed nervous system. The octopus's suckers, staggered along each arm, are employed in a wide range of behaviors. Many of these behaviors, such as foraging in visually occluded spaces, are executed under conditions of limited or absent visual feedback. In coordinating unseen limbs with seemingly infinite degrees of freedom across a variety of adaptive behaviors, the octopus appears to have solved a significant control problem facing the field of soft-bodied robotics. To study the strategies that the octopus uses to find and capture prey within unseen spaces, we designed and 3D printed visually occluded foraging tasks and tracked arm motion as the octopus attempted to find and retrieve a food reward. By varying the location of the food reward within these tasks, we can characterize how the arms and suckers adapt to their environment to find and capture prey. We compared these results to simulated experimental conditions performed by a model octopus arm to isolate the primary mechanisms driving our experimental observations. We found that the octopus relies on a contact-based search strategy that emerges from local sucker coordination to simplify the control of its soft, highly flexible limbs.
Collapse
Affiliation(s)
- Dominic M Sivitilli
- Department of Psychology, University of Washington, Seattle, WA, United States of America
- Astrobiology Program, University of Washington, Seattle, WA, United States of America
| | - Terrell Strong
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, United States of America
| | - Willem Weertman
- Department of Psychology, University of Washington, Seattle, WA, United States of America
| | - Joseph Ullmann
- Friday Harbor Laboratories, University of Washington, Seattle, WA, United States of America
| | - Joshua R Smith
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, United States of America
- Department of Electrical & Computer Engineering, University of Washington, 98195 Seattle, WA, United States of America
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, WA, United States of America
- Astrobiology Program, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
15
|
Abstract
Allard et al. describe the remarkable 'taste by touch' abilities of cephalopods, in particular octopuses.
Collapse
Affiliation(s)
- Corey A Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Chaung K, Baharav TZ, Henderson G, Zheludev IN, Wang PL, Salzman J. [WITHDRAWN] SPLASH: a statistical, reference-free genomic algorithm unifies biological discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549408. [PMID: 37503014 PMCID: PMC10370119 DOI: 10.1101/2023.07.17.549408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2022/497555. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The correct preprint can be found at doi: https://doi.org/10.1101/2022.06.24.497555.
Collapse
|
17
|
Ahuja N, Hwaun E, Pungor JR, Rafiq R, Nemes S, Sakmar T, Vogt MA, Grasse B, Diaz Quiroz J, Montague TG, Null RW, Dallis DN, Gavriouchkina D, Marletaz F, Abbo L, Rokhsar DS, Niell CM, Soltesz I, Albertin CB, Rosenthal JJC. Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity. Curr Biol 2023:S0960-9822(23)00739-X. [PMID: 37343558 DOI: 10.1016/j.cub.2023.05.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.
Collapse
Affiliation(s)
- Namrata Ahuja
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ernie Hwaun
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Judit R Pungor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ruhina Rafiq
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sal Nemes
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Taylor Sakmar
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Miranda A Vogt
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Bret Grasse
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Juan Diaz Quiroz
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Tessa G Montague
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ryan W Null
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Danielle N Dallis
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Ferdinand Marletaz
- Centre for Life's Origin & Evolution, Department of Ecology, Evolution & Environment, University College London, WC1E 6BT London, UK
| | - Lisa Abbo
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Caroline B Albertin
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
18
|
Imperadore P, Cagnin S, Allegretti V, Millino C, Raffini F, Fiorito G, Ponte G. Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk Octopus vulgaris. Front Mol Neurosci 2023; 16:1091305. [PMID: 37266373 PMCID: PMC10230085 DOI: 10.3389/fnmol.2023.1091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 06/03/2023] Open
Abstract
Octopus vulgaris is a cephalopod mollusk and an active marine predator that has been at the center of a number of studies focused on the understanding of neural and biological plasticity. Studies on the machinery involved in e.g., learning and memory, regeneration, and neuromodulation are required to shed light on the conserved and/or unique mechanisms that these animals have evolved. Analysis of gene expression is one of the most essential means to expand our understanding of biological machinery, and the selection of an appropriate set of reference genes is the prerequisite for the quantitative real-time polymerase chain reaction (qRT-PCR). Here we selected 77 candidate reference genes (RGs) from a pool of stable and relatively high-expressed transcripts identified from the full-length transcriptome of O. vulgaris, and we evaluated their expression stabilities in different tissues through geNorm, NormFinder, Bestkeeper, Delta-CT method, and RefFinder. Although various algorithms provided different assemblages of the most stable reference genes for the different kinds of tissues tested here, a comprehensive ranking revealed RGs specific to the nervous system (Ov-RNF7 and Ov-RIOK2) and Ov-EIF2A and Ov-CUL1 across all considered tissues. Furthermore, we validated RGs by assessing the expression profiles of nine target genes (Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2, and Ov-Snx20) in different areas of the octopus nervous system (gastric ganglion, as control). Our study allowed us to identify the most extensive set of stable reference genes currently available for the nervous system and appendages of adult O. vulgaris.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy
- CIR-Myo Myology Center, University of Padova, Padova, Italy
| | - Vittoria Allegretti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Francesca Raffini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
19
|
Kang G, Allard CAH, Valencia-Montoya WA, van Giesen L, Kim JJ, Kilian PB, Bai X, Bellono NW, Hibbs RE. Sensory specializations drive octopus and squid behaviour. Nature 2023; 616:378-383. [PMID: 37045917 PMCID: PMC10262778 DOI: 10.1038/s41586-023-05808-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.
Collapse
Affiliation(s)
- Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter B Kilian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xiaochen Bai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
21
|
Allard CAH, Kang G, Kim JJ, Valencia-Montoya WA, Hibbs RE, Bellono NW. Structural basis of sensory receptor evolution in octopus. Nature 2023; 616:373-377. [PMID: 37045920 PMCID: PMC10228259 DOI: 10.1038/s41586-023-05822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 04/14/2023]
Abstract
Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Hardege I, Morud J, Courtney A, Schafer WR. A Novel and Functionally Diverse Class of Acetylcholine-Gated Ion Channels. J Neurosci 2023; 43:1111-1124. [PMID: 36604172 PMCID: PMC9962794 DOI: 10.1523/jneurosci.1516-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Chung WS, López-Galán A, Kurniawan ND, Marshall NJ. The brain structure and the neural network features of the diurnal cuttlefish Sepia plangon. iScience 2023; 26:105846. [PMID: 36624840 PMCID: PMC9823234 DOI: 10.1016/j.isci.2022.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cuttlefish are known for their rapid changes of appearance enabling camouflage and con-specific communication for mating or agonistic display. However, interpretation of their sophisticated behaviors and responsible brain areas is based on the better-studied squid brain atlas. Here we present the first detailed description of the neuroanatomical features of a tropical and diurnal cuttlefish, Sepia plangon, coupled with observations on ontogenetic changes in its visual and learning centers using a suite of MRI-based techniques and histology. We then make comparisons to a loliginid squid, treating it as a 'baseline', and also to other cuttlefish species to help construct a connectivity map of the cuttlefish brain. Differences in brain anatomy and the previously unknown neural connections associated with camouflage, motor control and chemosensory function are described. These findings link brain heterogeneity to ecological niches and lifestyle, feeding hypotheses and evolutionary history, and provide a timely, new technology update to older literature.
Collapse
Affiliation(s)
- Wen-Sung Chung
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alejandra López-Galán
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
24
|
Duruz J, Sprecher M, Kaldun JC, Al-Soudy AS, Lischer HEL, van Geest G, Nicholson P, Bruggmann R, Sprecher SG. Molecular characterization of cell types in the squid Loligo vulgaris. eLife 2023; 12:80670. [PMID: 36594460 PMCID: PMC9839350 DOI: 10.7554/elife.80670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cephalopods are set apart from other mollusks by their advanced behavioral abilities and the complexity of their nervous systems. Because of the great evolutionary distance that separates vertebrates from cephalopods, it is evident that higher cognitive features have evolved separately in these clades despite the similarities that they share. Alongside their complex behavioral abilities, cephalopods have evolved specialized cells and tissues, such as the chromatophores for camouflage or suckers to grasp prey. Despite significant progress in genome and transcriptome sequencing, the molecular identities of cell types in cephalopods remain largely unknown. We here combine single-cell transcriptomics with in situ gene expression analysis to uncover cell type diversity in the European squid Loligo vulgaris. We describe cell types that are conserved with other phyla such as neurons, muscles, or connective tissues but also cephalopod-specific cells, such as chromatophores or sucker cells. Moreover, we investigate major components of the squid nervous system including progenitor and developing cells, differentiated cells of the brain and optic lobes, as well as sensory systems of the head. Our study provides a molecular assessment for conserved and novel cell types in cephalopods and a framework for mapping the nervous system of L. vulgaris.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Marta Sprecher
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Jenifer C Kaldun
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Al-Sayed Al-Soudy
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Heidi EL Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| |
Collapse
|
25
|
Bidel F, Bennett NC, Wardill TJ. Octopus bimaculoides' arm recruitment and use during visually evoked prey capture. Curr Biol 2022; 32:4727-4733.e3. [PMID: 36130600 DOI: 10.1016/j.cub.2022.08.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Octopus' limb hyper-redundancy complicates traditional motor control system theory due to its extensive sensory inputs, subsequent decision-making, and arm coordination. Octopuses are thought to reduce flexibility control complexity by relying on highly stereotypical motor primitives (e.g., reaching1-4 and crawling5) and multi-level processes to coordinate movement,6,7 utilizing extensive peripheral nervous system (PNS) processing.2,8,9 Division of labor along the anterior-posterior axis10 and limb specialization of the four anterior arms in T-maze food retrieval11 further simplify control. However, specific arm recruitment and coordination during visually guided reaching behavior remains poorly understood. Here, we investigated visually evoked Octopus bimaculoides' prey capture capabilities12,13 by eliciting and examining prey-specific arm recruitment. When striking crabs, octopuses preferred synchronous arm recruitment, while sequential arm recruitment with a characteristic swaying movement is employed for shrimp. Such behavioral selection aligns with specific prey escape strategies and the octopus' flexible arm biomechanical constraints. Although side bias existed, we found significant bilateral symmetry, with one side being functionally a mirror of the other rather than anterior arm use being functionally equal and differing to posterior arm use. Among arms, the second limb is unequivocally dominant for goal-directed monocularly driven prey capture. Although the eight arms share gross anatomy and are considered equipotential,10,14 such arm use for specific actions could reflect subtle evolutionary adaptations. Finally, we quantitatively show, corroborating earlier observations,10,15 that octopuses employ a dimension reduction strategy by actively deciding to recruit adjacent arms over other available arms during either sequential or synchronous visually evoked prey attack.
Collapse
Affiliation(s)
- Flavie Bidel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA.
| | - Natalie C Bennett
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Trevor J Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Macchi F, Edsinger E, Sadler KC. Epigenetic machinery is functionally conserved in cephalopods. BMC Biol 2022; 20:202. [PMID: 36104784 PMCID: PMC9476566 DOI: 10.1186/s12915-022-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Epigenetic regulatory mechanisms are divergent across the animal kingdom, yet these mechanisms are not well studied in non-model organisms. Unique features of cephalopods make them attractive for investigating behavioral, sensory, developmental, and regenerative processes, and recent studies have elucidated novel features of genome organization and gene and transposon regulation in these animals. However, it is not known how epigenetics regulates these interesting cephalopod features. We combined bioinformatic and molecular analysis of Octopus bimaculoides to investigate the presence and pattern of DNA methylation and examined the presence of DNA methylation and 3 histone post-translational modifications across tissues of three cephalopod species. RESULTS We report a dynamic expression profile of the genes encoding conserved epigenetic regulators, including DNA methylation maintenance factors in octopus tissues. Levels of 5-methyl-cytosine in multiple tissues of octopus, squid, and bobtail squid were lower compared to vertebrates. Whole genome bisulfite sequencing of two regions of the brain and reduced representation bisulfite sequencing from a hatchling of O. bimaculoides revealed that less than 10% of CpGs are methylated in all samples, with a distinct pattern of 5-methyl-cytosine genome distribution characterized by enrichment in the bodies of a subset of 14,000 genes and absence from transposons. Hypermethylated genes have distinct functions and, strikingly, many showed similar expression levels across tissues while hypomethylated genes were silenced or expressed at low levels. Histone marks H3K27me3, H3K9me3, and H3K4me3 were detected at different levels across tissues of all species. CONCLUSIONS Our results show that the DNA methylation and histone modification epigenetic machinery is conserved in cephalopods, and that, in octopus, 5-methyl-cytosine does not decorate transposable elements, but is enriched on the gene bodies of highly expressed genes and could cooperate with the histone code to regulate tissue-specific gene expression.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
27
|
Delmas P, Parpaite T, Coste B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron 2022; 110:2713-2727. [PMID: 35907398 DOI: 10.1016/j.neuron.2022.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 10/16/2022]
Abstract
Many ion channels have been described as mechanosensitive according to various criteria. Most broadly defined, an ion channel is called mechanosensitive if its activity is controlled by application of a physical force. The last decade has witnessed a revolution in mechanosensory physiology at the molecular, cellular, and system levels, both in health and in diseases. Since the discovery of the PIEZO proteins as prototypical mechanosensitive channel, many proteins have been proposed to transduce mechanosensory information in mammals. However, few of these newly identified candidates have all the attributes of bona fide, pore-forming mechanosensitive ion channels. In this perspective, we will cover and discuss new data that have advanced our understanding of mechanosensation at the molecular level.
Collapse
Affiliation(s)
- Patrick Delmas
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France.
| | - Thibaud Parpaite
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| | - Bertrand Coste
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| |
Collapse
|
28
|
Khan M, Hartmann AH, O’Donnell MP, Piccione M, Pandey A, Chao PH, Dwyer ND, Bargmann CI, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLoS Biol 2022; 20:e3001677. [PMID: 35696430 PMCID: PMC9232122 DOI: 10.1371/journal.pbio.3001677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The valence and salience of individual odorants are modulated by an animal’s innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.
Collapse
Affiliation(s)
- Munzareen Khan
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anna H. Hartmann
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Madeline Piccione
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anjali Pandey
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Genome and transcriptome mechanisms driving cephalopod evolution. Nat Commun 2022; 13:2427. [PMID: 35508532 PMCID: PMC9068888 DOI: 10.1038/s41467-022-29748-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/28/2022] [Indexed: 11/27/2022] Open
Abstract
Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing. “Cephalopods are known for their large nervous systems, complex behaviors, and morphological innovations. Here, the authors find that soft-bodied cephalopod genomes are more rearranged than other extant molluscs and that mRNA editing patterns are associated with the nervous system and repetitive elements”.
Collapse
|
30
|
Bao X, Wang W, Yuan T, Li Y, Chen X, Liu X, Xu X, Sun G, Li B, Yang J, Feng Y, Li Z. Transcriptome profiling based on larvae at different time points after hatching provides a core set of gene resource for understanding the immune response mechanisms of the egg-protecting behavior against Vibrio anguillarum infection in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2022; 124:430-441. [PMID: 35472401 DOI: 10.1016/j.fsi.2022.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tingzhu Yuan
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, 265800, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
31
|
Buresch KC, Sklar K, Chen JY, Madden SR, Mongil AS, Wise GV, Boal JG, Hanlon RT. Contact chemoreception in multi-modal sensing of prey by Octopus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:435-442. [PMID: 35445334 DOI: 10.1007/s00359-022-01549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/24/2022]
Abstract
Octopuses have keen vision and are generally considered visual predators, yet octopuses predominantly forage blindly in nature, inserting their arms into crevices to search and detect hidden prey. The extent to which octopuses discriminate prey using chemo- versus mechano-tactile sensing is unknown. We developed a whole-animal behavioral assay that takes advantage of octopuses' natural searching behavior to test their ability to discriminate prey from non-prey tastes solely via contact chemoreception. This methodology eliminated vision, mechano-tactile sensing and distance chemoreception while testing the contact chemosensory discriminatory abilities of the octopus arm suckers. Extracts from two types of prey (crab, shrimp) and three types of non-prey (sea star, algae, seawater) were embedded in agarose (to control for mechano-tactile discrimination) and presented to octopuses inside an artificial rock dome; octopuses reached their arms inside to explore its contents - imitating natural prey-searching behavior. Results revealed that octopuses are capable of discriminating between potential prey items using only contact chemoreception, as measured by an increased amount of sucker contact time and arm curls when presented with prey extracts versus non-prey extracts. These results highlight the importance of contact chemoreception in the multi-modal sensing involved in a complex foraging behavior.
Collapse
Affiliation(s)
- K C Buresch
- Marine Biological Laboratory, 7 MBL St, Woods Hole, MA, 02543, USA.
| | - K Sklar
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - J Y Chen
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - S R Madden
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - A S Mongil
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - G V Wise
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - J G Boal
- Millersville University, PO Box 1002, Millersville, PA, 17551, USA
| | - R T Hanlon
- Marine Biological Laboratory, 7 MBL St, Woods Hole, MA, 02543, USA
| |
Collapse
|
32
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
33
|
Ling Y, Fan H, Wang K, Lu Z, Wang L, Hou C, Zhang Q, Li Y, Li K, Wang H. Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107778. [PMID: 35257482 DOI: 10.1002/smll.202107778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical (EC) actuators have garnered significant attention in recent years, yet there are still some critical challenges to limit their application range, such as responsive time, multifunctionality, and actuating direction. Herein, an EC actuator with a back-to-back structure is fabricated by stacking two membranes with bilayer V2 O5 nanowires/single-walled carbon nanotubes (V2 O5 NWs/SWCNTs) networks, and shows a synchronous high actuation amplitude (about ±9.7 mm, ±28.4°) and multiple color changes. In this back-to-back structure, the inactive SWCNTs layer is used as a conductive current collector, and the bilayer network is attached to a porous polymer membrane. The dual-responsive processes of V2 O5 nanowires (V2 O5 NWs) actuation films and actuators are also deeply investigated through in situ EC X-ray diffraction and Raman spectroscopy. The results show that the EC actuation of the V2 O5 NWs/SWCNTs film is highly related to the redox behavior of the pseudocapacitive V2 O5 NWs layer. At last, both V2 O5 NWs and W18 O49 nanowires (W18 O49 NWs)-based EC actuators are constructed to demonstrate the multicolor changes and multidirectional actuation induced by the opposite lattice changes of V2 O5 NWs and W18 O49 NWs during ionic de-/intercalation, guiding the design of multifunctional EC actuators in the future.
Collapse
Affiliation(s)
- Yong Ling
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongwei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ziqiu Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lichao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glass Manufacturing Technology Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glass Manufacturing Technology Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
34
|
Gutnick T, Kuba MJ, Di Cosmo A. Neuroecology: Forces that shape the octopus brain. Curr Biol 2022; 32:R131-R135. [DOI: 10.1016/j.cub.2021.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Abstract
Birch et al. suggest that consciousness in any animal group must involve four aspects—perceptual richness, evaluative richness (affectivity), integration at one time (unity), and integration across time (temporality). This review will evaluate integration at one time in cephalopods, an area that offers many challenges. First, like most animals with a bilateral nervous system, cephalopods have laterality of brain function, and this challenges unity of function. Second, unlike most mammals, cephalopods have a heavy allocation of both neural and behavioural control to the periphery, especially in the case of octopuses. Third, like all animals, cephalopods gather information through several senses and there can be both unity within and competition between such information, challenging unity. Information gained across all these areas needs to be evaluated both in terms of the methodology used to gather information and the results of the investigation.
Collapse
|
36
|
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr Opin Neurobiol 2021; 71:52-59. [PMID: 34600187 DOI: 10.1016/j.conb.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems - the receptors, cells, organs, and dedicated high-order circuits - can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.
Collapse
Affiliation(s)
- Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| |
Collapse
|
37
|
Al-Soudy AS, Maselli V, Galdiero S, Kuba MJ, Polese G, Di Cosmo A. Identification and Characterization of a Rhodopsin Kinase Gene in the Suckers of Octopus vulgaris: Looking around Using Arms? BIOLOGY 2021; 10:biology10090936. [PMID: 34571813 PMCID: PMC8465341 DOI: 10.3390/biology10090936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Octopus arms are a fascinating and evolutionarily unique sensory organ, with hundreds of motile suckers, each with thousands of sensory cells, lining eight highly flexible arms. Scientifically, there are many open questions regarding the sensory capabilities of the arms and specifically the highly innervated suckers. In our present work, we used a multidisciplinary approach to fully characterize the light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. We found differences in the relative expression of mRNA in different sucker types at several locations along the arm, which might indicate a functional difference. Using labeling methods, we localized the expression to the highly sensitive sucker rim. Our findings indicate that octopus suckers, in specific areas of the arm, might have the ability for light sensing. We therefore suggest that suckers are tactile, chemical and light sensors. Abstract In their foraging behavior octopuses rely on arm search movements outside the visual field of the eyes. In these movements the environment is explored primarily by the suckers that line the entire length of the octopus arm. In this study, for the first time, we report the complete characterization of a light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. Furthermore, we found differences in relative mRNA expression in different sucker types at several arm levels, and localized it through in situ hybridization. Our findings suggest that the suckers in octopus arms are much more multimodal than was previously shown, adding the potential for light sensing to the already known mechanical and chemical sensing abilities.
Collapse
Affiliation(s)
- Al-Sayed Al-Soudy
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Michael J. Kuba
- Department of Neurobiology, Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 91120, Israel;
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0945, Japan
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
- Correspondence:
| |
Collapse
|
38
|
Tarvin RD. A Sucker for Taste. Cell 2021; 183:587-588. [PMID: 33125886 DOI: 10.1016/j.cell.2020.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biology is entering a new era in which techniques honed in model systems can be applied to the expanding array of organisms with sequenced genomes. In this issue of Cell, van Giesen et al. (2020) characterize the molecular foundation of the touch-taste sensory system in octopus suckers.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
39
|
Mistretta CM, Bradley RM. The Fungiform Papilla Is a Complex, Multimodal, Oral Sensory Organ. CURRENT OPINION IN PHYSIOLOGY 2021; 20:165-173. [PMID: 33681545 PMCID: PMC7928430 DOI: 10.1016/j.cophys.2021.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When solid or liquid stimuli contact the tongue tip during eating, the sensations of taste, touch and temperature are immediately evoked, and tongue function relies on these simultaneous multimodal responses. We focus on the fungiform papilla of the anterior tongue as a complex organ for taste, tactile and thermal modalities, all via chorda tympani nerve innervation from the geniculate ganglion. Rather than a review, our aim is to revise the classic archetype of the fungiform as predominantly a taste bud residence only and instead emphasize an amended concept of the papilla as a multimodal organ. Neurophysiological maps of fungiform papillae in functional receptive fields demonstrate responses to chemical, stroking and cold lingual stimuli. Roles are predicted for elaborate extragemmal nerve endings in tactile and temperature sensations, and potential functions for keratinocytes in noncanonical sensory signaling. The fungiform papilla is presented as a polymodal lingual organ, not solely a gustatory papilla.
Collapse
Affiliation(s)
- Charlotte M. Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Robert M. Bradley
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 United States
| |
Collapse
|
40
|
Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 2021; 109:1084-1099. [PMID: 33609484 DOI: 10.1016/j.neuron.2021.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Neuroscientists have long studied species with convenient biological features to discover how behavior emerges from conserved molecular, neural, and circuit level processes. With the advent of new tools, from viral vectors and gene editing to automated behavioral analyses, there has been a recent wave of interest in developing new, "nontraditional" model species. Here, we advocate for a complementary approach to model species development, that is, model clade development, as a way to integrate an evolutionary comparative approach with neurobiological and behavioral experiments. Capitalizing on natural behavioral variation in and investing in experimental tools for model clades will be a valuable strategy for the next generation of neuroscience discovery.
Collapse
|
41
|
Andouche A, Valera S, Baratte S. Exploration of chemosensory ionotropic receptors in cephalopods: the IR25 gene is expressed in the olfactory organs, suckers, and fins of Sepia officinalis. Chem Senses 2021; 46:6412677. [PMID: 34718445 DOI: 10.1093/chemse/bjab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While they are mostly renowned for their visual capacities, cephalopods are also good at olfaction for prey, predator, and conspecific detection. The olfactory organs and olfactory cells are well described but olfactory receptors-genes and proteins-are still undescribed in cephalopods. We conducted a broad phylogenetic analysis of the ionotropic glutamate receptor family in mollusks (iGluR), especially to identify IR members (Ionotropic Receptors), a variant subfamily whose involvement in chemosensory functions has been shown in most studied protostomes. A total of 312 iGluRs sequences (including 111 IRs) from gastropods, bivalves, and cephalopods were identified and annotated. One orthologue of the gene coding for the chemosensory IR25 co-receptor has been found in Sepia officinalis (Soff-IR25). We searched for Soff-IR25 expression at the cellular level by in situ hybridization in whole embryos at late stages before hatching. Expression was observed in the olfactory organs, which strongly validates the chemosensory function of this receptor in cephalopods. Soff-IR25 was also detected in the developing suckers, which suggests that the unique « taste by touch » behavior that cephalopods execute with their arms and suckers share features with olfaction. Finally, Soff-IR25 positive cells were unexpectedly found in fins, the two posterior appendages of cephalopods, mostly involved in locomotory functions. This result opens new avenues of investigation to confirm fins as additional chemosensory organs in cephalopods.
Collapse
Affiliation(s)
- Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA). MNHN, CNRS, SU, UCN, UA, 55 Rue Buffon, Paris, France
| | - Stéphane Valera
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA). MNHN, CNRS, SU, UCN, UA, 55 Rue Buffon, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA). MNHN, CNRS, SU, UCN, UA, 55 Rue Buffon, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
42
|
Bray N. Touch to taste. Nat Rev Neurosci 2020; 22:5. [PMID: 33214699 DOI: 10.1038/s41583-020-00410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|