1
|
Nikolova MT, He Z, Seimiya M, Jonsson G, Cao W, Okuda R, Wimmer RA, Okamoto R, Penninger JM, Camp JG, Treutlein B. Fate and state transitions during human blood vessel organoid development. Cell 2025; 188:3329-3348.e31. [PMID: 40250419 DOI: 10.1016/j.cell.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Human blood vessel organoids (hBVOs) have emerged as a system to model human vascular development and disease. Here, we use single-cell multi-omics together with genetic and signaling pathway perturbations to reconstruct hBVO development. Mesodermal progenitors bifurcate into endothelial and mural fates in vitro, and xenografted BVOs acquire definitive arteriovenous endothelial cell specification. We infer a gene regulatory network and use single-cell genetic perturbations to identify transcription factors (TFs) and receptors involved in cell fate specification, including a role for MECOM in endothelial and mural specification. We assess the potential of BVOs to generate organotypic states, identify TFs lacking expression in hBVOs, and find that induced LEF1 overexpression increases brain vasculature specificity. Finally, we map vascular disease-associated genes to hBVO cell states and analyze an hBVO model of diabetes. Altogether, we provide a comprehensive cell state atlas of hBVO development and illuminate the power and limitation of hBVOs for translational research.
Collapse
Affiliation(s)
- Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ryo Okuda
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - J Gray Camp
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
2
|
Xing H, Wang Q, Ma Y, Han R, Li H. The significance of MDK growth factor in the antler development of sika deer (Cervus nippon): An in-depth analysis. Gene Expr Patterns 2025; 55:119388. [PMID: 39733918 DOI: 10.1016/j.gep.2024.119388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Deer antlers exhibit rapid growth during the velvet phase. As a critical endogenous growth factor in animals, midkine (MDK) is likely closely associated with the growth of antlers. However, the spatio-temporal expression pattern of MDK during the velvet phase was unclear. This study explored the physiological role of MDK by analyzing its molecular characterization and spatio-temporal expression dynamics during the growth of sika deer antlers. The study cloned the coding sequences (CDS) of MDK, which spanned 429 bp and encoded 142 amino acids. The results of bioinformatics prediction analysis showed that MDK was an extracellular hydrophilic secreted protein, which was mainly composed of random coil. MDK protein was relatively conserved in evolution and MDK protein of sika deer had the closest relatives to ruminants and the furthest relatives to Aves. The tip tissues (dermis, mesenchyme, precartilage, cartilage) of antlers were collected from three important growth and development nodes (early period, EP. middle period, MP. late period, LP), and quantitative real-time polymerase chain reaction (qRT-PCR) was chosen to detect the spatio-temporal expression of the MDK. The results showed that MDK was expressed in all tissue sites of antler tip in EP, MP, LP. MDK had a consistent expression pattern under all growth periods and was strongly expressed in dermis and cartilage. The expression of MDK was consistently up-regulated in precartilage, whereas it was first up-regulated and then down-regulated in other tissues, and it was highly significant in MP compared to EP and LP (P < 0.01). This study suggested that MDK may regulate the growth of dermis and cartilage tissues mainly by participating in the process of angiogenesis and bone formation, thus promoting the rapid growth of antlers.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yukai Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Sun Y, Xu H, Zhu Y, Rao Y, Fan X, Wang Z, Gu H, Yue X, Zhao X, Su L, Cai R. Single-cell and spatial transcriptomic analyses reveal transcriptional cell lineage heterogeneity in extracranial arteriovenous malformation. J Dermatol Sci 2025; 118:66-75. [PMID: 40118698 DOI: 10.1016/j.jdermsci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Extracranial arteriovenous malformations (eAVMs) are rare congenital vascular anomalies consisting of abnormal artery-vein bypass with no intervening capillary network, and can lead to disability and death. The critical genetic determination factors and key transcriptional pathways of the eAVMs genesis process are still unclear. OBJECTIVE To generate an overview of the molecular information within eAVMs at the single-cell level. METHODS We performed single-cell RNA sequencing (scRNA-seq) on nine samples of eAVMs receiving a confirmatory histopathologic evaluation from a board-certified dermatopathologist and two nonlesional tissue sample controls. 10x Visium spatial transcriptomics (ST) was performed on one eAVM to spatially localize heterogeneous cells and profile the gene expression dynamics of the cells in their morphological context. The scRNA-seq and ST data were integrated and analyzed to further query for spatially restricted mapping of intrapopulation heterogeneous cells. RESULTS We identified different cell states of endothelial cells (ECs), perivascular cells and immune cells in eAVMs, uncovered the presence of MAFB+ nidus ECs, characterized mesenchymal activation in ECs, and identified transcriptional variation within perivascular cells and the presence of smooth muscle-like pericytes in eAVMs. Dysregulated cell to cell interactions among ECs, perivascular cells and immune cells that are associated with eAVMs, including those involving MDK, VEGF, ANGPT, SEMA3 and GALECTIN-9 were cataloged. Together, our results depicted the heterogeneity underlying cell function and interaction of eAVMs at a single-cell resolution. CONCLUSION We present a comprehensive picture of the cell-resolution atlas that describes the transcriptomic heterogeneity underlying cell function and interaction in eAVMs.
Collapse
Affiliation(s)
- Yi Sun
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyang Xu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanze Zhu
- School of Automation, Northwestern Polytechnical University, Xi 'an, China
| | - Yamin Rao
- Department of Pathology, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xindong Fan
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojie Yue
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiong Zhao
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ren Cai
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2025; 81:1400-1415. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Guan Y, Luan Y, Zhao S, Li M, Girolamo F, Palmer JD, Guan Q. Single-cell RNA sequencing for characterizing the immune communication and iron metabolism roles in CD31 + glioma cells. Transl Cancer Res 2025; 14:2421-2439. [PMID: 40386270 PMCID: PMC12079608 DOI: 10.21037/tcr-2025-377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 05/20/2025]
Abstract
Background Gliomas are aggressive brain tumors marked by complex cellular interactions and significant immune cell infiltration. This study investigated the role of CD31+ immune cells, specifically macrophages and T cells, in the glioma microenvironment through single-cell RNA sequencing (scRNA-seq). Methods We employed the CellChat framework to map cell-cell communication pathways and used Monocle3 for pseudotime trajectory analysis to characterize the signaling and developmental progressions within CD31+ cells. Pathways such as osteopontin (SPP1) and major histocompatibility complex class II (MHC-II) were analyzed in terms of their role in immune regulation, and we examined the expression of ferritin, an iron-binding protein, to assess its potential function in modulating CD31+ cell activity. Results Our findings highlight the expression of key pathways, including SPP1 and MHC-II, influencing immune regulation. Ferritin was found to be highly expressed in CD31+ cells, suggesting a dual role in iron metabolism and immune modulation within the glioma microenvironment. Conclusions This study clarified the distinct roles of CD31+ immune cells in glioma progression and identified ferritin as a potential therapeutic target for modulating immune responses in gliomas. These findings may offer new directions in glioma research and the development of immunotherapy, which can aid in improving treatment outcomes.
Collapse
Affiliation(s)
- Yiming Guan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yu Luan
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Shanshan Zhao
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Meiyan Li
- Tuberculosis Laboratory, Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Francesco Girolamo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Qi Guan
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Xia J, Gao X, Yao J, Fei Y, Song D, Gu Z, Zheng G, Gu Y, Tu C. Injectable Brain Extracellular Matrix Hydrogels Enhance Neuronal Migration and Functional Recovery After Intracerebral Hemorrhage. Biomater Res 2025; 29:0192. [PMID: 40265103 PMCID: PMC12012376 DOI: 10.34133/bmr.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/09/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Neural repair within the lesion cavity caused by intracerebral hemorrhage (ICH) remains a major therapeutic challenge. Hydrogels hold great potential in regenerative medicine as functional scaffolds. However, inadequate host cell infiltration and suboptimal delivery methods have limited their application in tissue engineering. Here, we describe an optimized decellularization approach to create injectable brain extracellular matrix (ECM) hydrogels for the treatment of ICH. The hydrogel exhibits excellent biodegradability and biocompatibility. In an ICH rat model, the hydrogel implanted into the stroke cavity promoted neural recovery, facilitated cell recruitment, enhanced angiogenesis, and inhibited inflammation in the peri-cavity region at 14 d post-implantation. Furthermore, the hydrogel improved cell proliferation and migration, reversed cell apoptosis, and modulated transcriptomic changes in vitro. Notably, the hydrogel may promote neuronal migration and neural functional recovery after ICH through the slit guidance ligand 2-receptor roundabout guidance receptor 1 (Slit2-Robo1) signaling pathway. These findings highlight the potential of brain ECM hydrogels as a promising strategy for brain tissue regeneration.
Collapse
Affiliation(s)
- Jiajie Xia
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Jun Yao
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Dagang Song
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Zhiwei Gu
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Gang Zheng
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuxiang Gu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Chuanjian Tu
- Department of Neurosurgery, Shaoxing Central Hospital,
China Medical University, Shaoxing, Zhejiang 312030, China
| |
Collapse
|
7
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Howard CE, Cheenath M, Crouch E. The promise of cerebral organoids for neonatology. Curr Opin Pediatr 2025; 37:182-190. [PMID: 40013913 PMCID: PMC11902893 DOI: 10.1097/mop.0000000000001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Applying discoveries from basic research to patients in the neonatal intensive care unit (NICU) is challenging given the difficulty of modeling this population in animal models, lack of translational relevance from animal models to humans, and scarcity of primary human tissue. Human cell-derived cerebral organoid models are an appealing way to address some of these gaps. In this review, we will touch on previous work to model neonatal conditions in cerebral organoids, some limitations of this approach, and recent strategies that have attempted to address these limitations. RECENT FINDINGS While modeling of neurodevelopmental disorders has been an application of cerebral organoids since their initial description, recent studies have dramatically expanded the types of brain regions and disease models available. Additionally, work to increase the complexity of organoid models by including immune and vascular cells, as well as modeling human heterogeneity with mixed donor organoids will provide new opportunities to model neonatal pathologies. SUMMARY Organoids are an attractive model to study human neurodevelopmental pathologies relevant to patients in the neonatal ICU. New technologies will broaden the applicability of these models to neonatal research and their usefulness as a drug screening platform.
Collapse
Affiliation(s)
- Clare E Howard
- Division of Newborn Medicine, Boston Children’s Hospital
| | - Manju Cheenath
- Department of Obstetrics and Gynecology, University of California, San Francisco
| | - Elizabeth Crouch
- Department of Pediatrics, University of California, San Francisco
| |
Collapse
|
9
|
Albertson AJ, Winkler EA, Yang AC, Buckwalter MS, Dingman AL, Fan H, Herson PS, McCullough LD, Perez-Pinzon M, Sansing LH, Sun D, Alkayed NJ. Single-Cell Analysis in Cerebrovascular Research: Primed for Breakthroughs and Clinical Impact. Stroke 2025; 56:1082-1091. [PMID: 39772596 PMCID: PMC11932790 DOI: 10.1161/strokeaha.124.049001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Data generated using single-cell RNA-sequencing has the potential to transform understanding of the cerebral circulation and advance clinical care. However, the high volume of data, sometimes generated and presented without proper pathophysiological context, can be difficult to interpret and integrate into current understanding of the cerebral circulation and its disorders. Furthermore, heterogeneity in the representation of brain regions and vascular segments makes it difficult to compare results across studies. There are currently no standards for tissue collection and processing that allow easy comparisons across studies and analytical platforms. There are no standards either for single-cell data analysis and presentation. This topical review introduces single-cell RNA-sequencing to physicians and scientists in the cerebrovascular field, with the goals of highlighting opportunities and challenges of applying this technology in the cerebrovascular field and discussing key concepts and knowledge gaps that can be addressed by single-cell RNA-sequencing.
Collapse
Affiliation(s)
- Asher J. Albertson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California San Francisco, CA
| | - Andrew C. Yang
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California San Francisco, CA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA
| | - Andra L. Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Huihui Fan
- Department of Neurology, University of Texas Health Science Center, Houston, TX
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH
| | | | | | - Lauren H. Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute of Neurological Degeneration Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute Portland, OR
| |
Collapse
|
10
|
He T, Zhang M, Qin J, Wang Y, Li S, Du C, Jiao J, Ji F. Endothelial PD-1 Regulates Vascular Homeostasis and Oligodendrogenesis during Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417410. [PMID: 40013943 PMCID: PMC12021089 DOI: 10.1002/advs.202417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Appropriate vascular and neural development is essential for central nervous system (CNS). Although programmed cell death receptor 1 (PD-1) mediates neurogenesis, its role in cerebrovascular development remains poorly understood. Here, a correlation between cerebral vessels and oligodendrocyte precursor cells (OPCs) is revealed during brain development. The ablation of endothelial PD-1 triggers cortical hypervascularization through excessive angiogenic sprouting, concomitantly driving OPC differentiation. These alterations disrupt blood brain barrier (BBB) maturation, induce dysmyelination, and ultimately result in abnormal behavior in mice. Mechanistically, the loss of endothelial PD-1 suppresses the activity of the Wnt/β-catenin signaling pathway, thereby disrupting normal angiogenesis. Concurrently, it activates the MEK1/2-ERK1/2-GLI1 pathway, leading to increased GREMLIN1 (GREM1) expression. Elevated GREM1 secretion inhibits the BMP/SMAD1/5/SMAD4 signaling cascade in OPCs, which inhibits oligodendrogenesis and myelination. These findings indicate the importance of endothelial cell-intrinsic PD-1 in regulating the oligovascular niche, and suggest potential therapeutic implications for neurological disorders associated with disrupted vascular development.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
| | - Mengtian Zhang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Sihan Li
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chaoyi Du
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
11
|
Qadir AS, Das S, Nedunchezian S, Masuhara K, Desai TJ, Rehman J, Kadur Murthy P, Tsukasaki Y, Shao L, Malik AB. Physiological Modeling of the Vascularized Human Lung Organoid. Am J Respir Cell Mol Biol 2025; 72:354-363. [PMID: 39514019 PMCID: PMC12005031 DOI: 10.1165/rcmb.2024-0413ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Human lung organoids (hLOs) derived from induced pluripotent stem cells (iPSCs) are of great interest, as they inform lung development, such as differentiation of lung epithelial subtypes in the distal alveolar unit. An unaddressed question is whether introducing endothelial cells (ECs) and vascularization provides a better representation of hLOs. Here we describe a method in which vessels become integrated with hLOs. hLOs were generated by combining human iPSC-derived lung progenitor cells (LPs) with ECs at varying LP:EC ratios. At the optimal combination of both cells, we observed vessel infiltration of hLOs compared to without ECs. Red blood cells were seen in hLOs implanted into kidney capsules of NOD/SCID mice. Both human and mouse ECs conjoined to form chimeric vessels in hLOs. The vascularized hLOs showed alveolar type II epithelial (ATII) cells and ATI cells, although there was no difference in 1:1 ATII/ATI ratio. We observed primitive airway sacs with alveolar epithelial cells lining the lumen of vascularized hLOs. Electron microscopy revealed surfactant production in ATII cells of vascularized hLOs in contrast to absence of vessels. The vascularized hLOs also mounted a robust inflammatory response characterized by influx of mouse neutrophils after challenging mice with LPS. Thus, interactions of ECs with LPs generated vascularized hLOs that induced ATII and ATI differentiation, although not reaching to the ratio of 1:9 seen in mature human lungs. hLOs also showed the LPS induced inflammatory response upon transplantation into recipient mice. Our results show the potential of vascularized hLOs for studying human lung development and inflammatory lung injury.
Collapse
Affiliation(s)
- Abdul S. Qadir
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Sukanta Das
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Swathi Nedunchezian
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Kaori Masuhara
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Tushar J. Desai
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California; and
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois
| | | | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine
- Cell Biologic Inc., Chicago, Illinois
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine
- The Center for Lung and Vascular Biology, and
| |
Collapse
|
12
|
Yang R, Ji F, Jiao J. Early central nervous system development and neuron regeneration. Curr Opin Genet Dev 2025; 90:102286. [PMID: 39637751 DOI: 10.1016/j.gde.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The nervous system is the most complex system in the human body, and the normal development of the central nervous system (CNS) is essential for maintaining the healthy life activities of the individual. CNS development requires the orchestration of multiple internal or external or direct or indirect factors to regulate neural stem cell fate specification. Here, we provide a broad overview of the regulatory system of nerve cell fate decisions and discuss the latest technological approaches to achieve neural regeneration. Understanding the CNS development and regeneration mechanisms has shifted the paradigm from traditional experiments to high-throughput sequencing.
Collapse
Affiliation(s)
- Runhua Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
| |
Collapse
|
13
|
Borges B, Canepa E, Chang IJ, Herzeg A, Lianoglou B, Kishnani PS, Harmatz P, MacKenzie TC, Cohen JL. Prenatal Delivery of Enzyme Replacement Therapy to Fetuses Affected by Early-Onset Lysosomal Storage Diseases. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2025:e32132. [PMID: 39891377 DOI: 10.1002/ajmg.c.32132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The expansion of prenatal genetic screening and diagnosis warrants the evaluation of approved postnatal therapies that may be safely and feasibly translated to prenatal administration to a fetus affected by monogenic disease. For lysosomal storage diseases (LSDs), enzyme replacement therapy (ERT) often represents the main therapeutic approach. In utero enzyme replacement therapy (IUERT) has several potential benefits compared to postnatal therapy, such as: (1) delivering enzyme before the onset of irreversible organ damage; (2) developing tolerance toward the recombinant enzyme; and (3) targeting the central nervous system through a more permeable blood-brain barrier. In this review, we examine the general and disease-specific rationale for IUERT, and provide an overview of the main elements of our current clinical trial for the prenatal treatment of early-onset lysosomal storage diseases. Trial Registration: IUERT clinical trial: NCT04532047; Alpha thalassemia clinical trial: NCT02986698.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Emma Canepa
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Irene J Chang
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California, USA
| | - Akos Herzeg
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Billie Lianoglou
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Department of Pediatrics, Division of Gastroenterology, University of California San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
16
|
Mirchia K, Choudhury A, Joseph T, Birrueta JO, Phillips JJ, Bhaduri A, Crouch EE, Perry A, Raleigh DR. Meningeal solitary fibrous tumor cell states phenocopy cerebral vascular development and homeostasis. Neuro Oncol 2025; 27:155-166. [PMID: 39207122 PMCID: PMC11726342 DOI: 10.1093/neuonc/noae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with local recurrence and hematogenous metastasis. The cell states and spatial transcriptomic architecture underlying the unique clinical behavior of meningeal SFTs are unknown. METHODS Single-cell (n = 4), spatial (n = 8), and bulk RNA sequencing (n = 22) were used to define the cell states and spatial transcriptomic architecture of meningeal SFTs across histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. Immunofluorescence, immunohistochemistry, and comparison of single-cell types to meningiomas, or to cerebral vascular development or homeostasis, were used for validation. RESULTS Here we show meningeal SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development or homeostasis. Single-cell trajectory analysis and pseudotemporal ordering of single cells suggest that meningeal SFT cell fate decisions are dynamic and interchangeable. Cell-cell communication analyses demonstrate receptor-ligand interactions throughout the meningeal SFT microenvironment, particularly between SFT cells, endothelia, and immature neurons. A direct comparison of single-cell transcriptomes from meningeal SFTs versus meningiomas shows that SFT cells are enriched in the expression of endothelial markers while meningioma cells are enriched in the expression of mural cell markers. Meningeal SFT spatial transcriptomes show regionally distinct intratumor heterogeneity in cell states, gene expression programs, and cell-cell interactions across World Health Organization histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. CONCLUSIONS These results shed light on pathways underlying meningeal SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell, spatial, and bulk RNA sequencing data across human cancers and normal tissues.
Collapse
Affiliation(s)
- Kanish Mirchia
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Abrar Choudhury
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA (A.B.)
| | - Elizabeth E Crouch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - David R Raleigh
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Mu L, Wang G, Yang X, Liang J, Tong H, Li L, Geng K, Bo Y, Hu X, Yang R, Xu X, Zhang Y, Zhang H. Physiological premature aging of ovarian blood vessels leads to decline in fertility in middle-aged mice. Nat Commun 2025; 16:72. [PMID: 39747922 PMCID: PMC11695630 DOI: 10.1038/s41467-024-55509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles. Utilizing genetic-modified mouse models, we demonstrate that granulosa cell secreted VEGFA governs ovarian angiogenesis, but the physiological decline in oBV is not attributed to VEGFA insufficiency. Instead, through single-cell sequencing, we identify the aging of the ovarian vascular endothelium as the primary factor contributing to oBV decline. Consequently, the administration of salidroside, a natural compound that is functional to reverse oBV aging and promote ovarian angiogenesis, significantly enhances ovarian blood supply and improve fertility in older females. Our findings highlight that enhancing oBV function is a promising strategy to boost fertility in females.
Collapse
Affiliation(s)
- Lu Mu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ge Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huan Tong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaiying Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingnan Bo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xindi Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruobing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Chen J, Choi JJY, Lin PY, Huang EJ. Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:221-243. [PMID: 39401848 PMCID: PMC11759652 DOI: 10.1146/annurev-pathmechdis-111523-023446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune-vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.
Collapse
Affiliation(s)
- Jiapei Chen
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA;
| | - Jennifer Ja-Yoon Choi
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Pin-Yeh Lin
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Eric J Huang
- Pathology Service, Veterans Administration Health Care System, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA;
| |
Collapse
|
19
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Tu T, Zhang S, Li J, Jiang C, Ren J, Zhang S, Meng X, Peng H, Xing D, Zhang H, Hong T, Yu J. Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss. Angiogenesis 2024; 28:3. [PMID: 39636449 DOI: 10.1007/s10456-024-09957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Shiju Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Xiaosheng Meng
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Hao Peng
- Department of Neurosurgery in Hainan General Hospital, Hainan Medical University, Hainan, China
- Department of neurosurgery, The second people's hospital of hainan province, Hainan, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
21
|
Zhang YX, Zhou Y, Xiong YY, Li YM. Beyond skin deep: Revealing the essence of iPS cell-generated skin organoids in regeneration. Burns 2024; 50:107194. [PMID: 39317530 DOI: 10.1016/j.burns.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Various methods have been used for in vivo and in vitro skin regeneration, including stem cell therapy, tissue engineering, 3D printing, and platelet-rich plasma (PRP) injection therapy. However, these approaches are rooted in the existing knowledge of skin structures, which overlook the normal physiological processes of skin development and fall short of replicating the skin's regenerative processes outside the body. This comprehensive review primarily focuses on skin organoids derived from human pluripotent stem cells, which have the capacity to regenerate human skin tissue by restoring the embryonic skin structure, thus offering a novel avenue for producing in vitro skin substitutes. Furthermore, they contribute to the repair of damaged skin lesions in patients with systemic sclerosis or severe burns. Particular emphasis will be placed on the origins, generations, and applications of skin organoids, especially in dermatology, and the challenges that must be addressed before clinical implementation.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yuan Zhou
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yu-Yun Xiong
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
22
|
Sobierajski E, Czubay K, Beemelmans C, Beemelmans C, Meschkat M, Uhlenkamp D, Meyer G, Wahle P. Vascular Development of Fetal and Postnatal Neocortex of the Pig, the European Wild Boar Sus scrofa. J Comp Neurol 2024; 532:e70011. [PMID: 39660539 PMCID: PMC11632654 DOI: 10.1002/cne.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024]
Abstract
The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots. In all cortical layers, vessel volume from total brain volume at E100 resembled that of a postnatal day (P) 30 piglet. Endothelial cells expressed the tight junction protein claudin-5 from E45 onward. GFAP+ and AQP4+ astrocytes, PDGFRβ+ pericytes, and α-SMA+ smooth muscle cells are detectable near vessels at E60 suggesting an early assembly of blood-brain barrier components. The vascular system in the visual cortex is advanced before birth with an almost mature pattern at E100. Findings were confirmed by blots that showed a steady increase of expression of tight junction and angiogenesis-related proteins (claudin-5, occludin, VE-cadherin, PECAM-1/CD31) from E65 onward until P90. The expression profile was similar in visual and somatosensory cortex. Together, we report a rapid maturation of the vascular system in pig cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | - Katrin Czubay
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | | | | | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of MedicineUniversity of La LagunaSanta Cruz de TenerifeTenerifeSpain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
23
|
Crouch EE. The molecular landscape of vascular cells in the human brain. Nat Rev Cardiol 2024; 21:847-848. [PMID: 39304749 DOI: 10.1038/s41569-024-01079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
24
|
Chen J, Crouch EE, Zawadzki ME, Jacobs KA, Mayo LN, Choi JJY, Lin PY, Shaikh S, Tsui J, Gonzalez-Granero S, Waller S, Kelekar A, Kang G, Valenzuela EJ, Birrueta JO, Diafos LN, Wedderburn-Pugh K, Di Marco B, Xia W, Han CZ, Coufal NG, Glass CK, Fancy SPJ, Alfonso J, Kriegstein AR, Oldham MC, Garcia-Verdugo JM, Kutys ML, Lehtinen MK, Combes AJ, Huang EJ. Proinflammatory immune cells disrupt angiogenesis and promote germinal matrix hemorrhage in prenatal human brain. Nat Neurosci 2024; 27:2115-2129. [PMID: 39349662 PMCID: PMC11537974 DOI: 10.1038/s41593-024-01769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/19/2024] [Indexed: 10/28/2024]
Abstract
Germinal matrix hemorrhage (GMH) is a devastating neurodevelopmental condition affecting preterm infants, but why blood vessels in this brain region are vulnerable to rupture remains unknown. Here we show that microglia in prenatal mouse and human brain interact with nascent vasculature in an age-dependent manner and that ablation of these cells in mice reduces angiogenesis in the ganglionic eminences, which correspond to the human germinal matrix. Consistent with these findings, single-cell transcriptomics and flow cytometry show that distinct subsets of CD45+ cells from control preterm infants employ diverse signaling mechanisms to promote vascular network formation. In contrast, CD45+ cells from infants with GMH harbor activated neutrophils and monocytes that produce proinflammatory factors, including azurocidin 1, elastase and CXCL16, to disrupt vascular integrity and cause hemorrhage in ganglionic eminences. These results underscore the brain's innate immune cells in region-specific angiogenesis and how aberrant activation of these immune cells promotes GMH in preterm infants.
Collapse
Affiliation(s)
- Jiapei Chen
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth E Crouch
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Kyle A Jacobs
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Lakyn N Mayo
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Ja-Yoon Choi
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Pin-Yeh Lin
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Saba Shaikh
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Susana Gonzalez-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Shamari Waller
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Avani Kelekar
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kaylee Wedderburn-Pugh
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Wenlong Xia
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stephen P J Fancy
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Arnold R Kriegstein
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael C Oldham
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Matthew L Kutys
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Alexis J Combes
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA.
- Pathology Service 113B, San Francisco VA Health Care Systems, San Francisco, CA, USA.
| |
Collapse
|
25
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
26
|
Erickson MA, Johnson RS, Damodarasamy M, MacCoss MJ, Keene CD, Banks WA, Reed MJ. Data-independent acquisition proteomic analysis of the brain microvasculature in Alzheimer's disease identifies major pathways of dysfunction and upregulation of cytoprotective responses. Fluids Barriers CNS 2024; 21:84. [PMID: 39434151 PMCID: PMC11492478 DOI: 10.1186/s12987-024-00581-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Brain microvascular dysfunction is an important feature of Alzheimer's disease (AD). To better understand the brain microvascular molecular signatures of AD, we processed and analyzed isolated human brain microvessels by data-independent acquisition liquid chromatography with tandem mass spectrometry (DIA LC-MS/MS) to generate a quantitative dataset at the peptide and protein level. Brain microvessels were isolated from parietal cortex grey matter using protocols that preserve viability for downstream functional studies. Our cohort included 23 subjects with clinical and neuropathologic concordance for Alzheimer's disease, and 21 age-matched controls. In our analysis, we identified 168 proteins whose abundance was significantly increased, and no proteins that were significantly decreased in AD. The most highly increased proteins included amyloid beta, tau, midkine, SPARC related modular calcium binding 1 (SMOC1), and fatty acid binding protein 7 (FABP7). Additionally, Gene Ontology (GO) enrichment analysis identified the enrichment of increased proteins involved in cellular detoxification and antioxidative responses. A systematic evaluation of protein functions using the UniProt database identified groupings into common functional themes including the regulation of cellular proliferation, cellular differentiation and survival, inflammation, extracellular matrix, cell stress responses, metabolism, coagulation and heme breakdown, protein degradation, cytoskeleton, subcellular trafficking, cell motility, and cell signaling. This suggests that AD brain microvessels exist in a stressed state of increased energy demand, and mount a compensatory response to ongoing oxidative and cellular damage that is associated with AD. We also used public RNAseq databases to identify cell-type enriched genes that were detected at the protein level and found no changes in abundance of these proteins between control and AD groups, indicating that changes in cellular composition of the isolated microvessels were minimal between AD and no-AD groups. Using public data, we additionally found that under half of the proteins that were significantly increased in AD microvessels had concordant changes in brain microvascular mRNA, implying substantial discordance between gene and protein levels. Together, our results offer novel insights into the molecular underpinnings of brain microvascular dysfunction in AD.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
| |
Collapse
|
27
|
Choudhury A, Cady MA, Lucas CHG, Najem H, Phillips JJ, Palikuqi B, Zakimi N, Joseph T, Birrueta JO, Chen WC, Bush NAO, Hervey-Jumper SL, Klein OD, Toedebusch CM, Horbinski CM, Magill ST, Bhaduri A, Perry A, Dickinson PJ, Heimberger AB, Ashworth A, Crouch EE, Raleigh DR. Perivascular NOTCH3+ Stem Cells Drive Meningioma Tumorigenesis and Resistance to Radiotherapy. Cancer Discov 2024; 14:1823-1837. [PMID: 38742767 PMCID: PMC11452293 DOI: 10.1158/2159-8290.cd-23-1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here, we report that NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor-initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival. Significance: There are no effective systemic therapies to treat meningiomas, and meningioma stem cells are poorly understood. Here, we report perivascular NOTCH3+ stem cells to drive meningioma tumorigenesis and resistance to radiotherapy. Our results identify a conserved mechanism and a therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.
Collapse
Affiliation(s)
- Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Martha A. Cady
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Calixto-Hope G. Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Brisa Palikuqi
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
| | - William C. Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Stephen T. Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alan Ashworth
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth E. Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - David R. Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Herzeg A, Borges B, Diafos LN, Gupta N, MacKenzie TC, Sanders SJ. The Conundrum of Mechanics Versus Genetics in Congenital Hydrocephalus and Its Implications for Fetal Therapy Approaches: A Scoping Review. Prenat Diagn 2024; 44:1354-1366. [PMID: 39218781 DOI: 10.1002/pd.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy, particularly for single-gene disorders (SGDs), have led to significant progress in developing innovative precision medicine approaches that hold promise for treating conditions such as primary hydrocephalus (CH), which is characterized by increased cerebrospinal fluid (CSF) volumes and cerebral ventricular dilation as a result of impaired brain development, often due to genetic causes. CH is a significant contributor to childhood morbidity and mortality and a driver of healthcare costs. In many cases, prenatal ultrasound can readily identify ventriculomegaly as early as 14-20 weeks of gestation, with severe cases showing poor neurodevelopmental outcomes. Postnatal surgical approaches, such as ventriculoperitoneal shunts, do not address the underlying genetic causes, have high complication rates, and result in a marginal improvement of neurocognitive deficits. Prenatal somatic cell gene therapy (PSCGT) promises a novel approach to conditions such as CH by targeting genetic mutations in utero, potentially improving long-term outcomes. To better understand the pathophysiology, genetic basis, and molecular pathomechanisms of CH, we conducted a scoping review of the literature that identified over 160 published genes linked to CH. Mutations in L1CAM, TRIM71, MPDZ, and CCDC88C play a critical role in neural stem cell development, subventricular zone architecture, and the maintenance of the neural stem cell niche, driving the development of CH. Early prenatal interventions targeting these genes could curb the development of the expected CH phenotype, improve neurodevelopmental outcomes, and possibly limit the need for surgical approaches. However, further research is needed to establish robust genotype-phenotype correlations and develop safe and effective PSCGT strategies for CH.
Collapse
Affiliation(s)
- Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Loukas N Diafos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Institute for Developmental and Regenerative Medicine, Oxford University, Oxford, UK
| |
Collapse
|
29
|
Morrison MJ, Natale BV, Allen S, Peterson N, Natale DRC. Characterizing placental pericytes: Hypoxia and proangiogenic signalling. Placenta 2024; 155:1-10. [PMID: 39106637 DOI: 10.1016/j.placenta.2024.07.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Pericytes wrap microvessels and interact with endothelial cells to regulate vascular growth. Though pericyte dropout has been reported in pathological human placentae and mouse models of placental pathology, there has been limited investigation of the role and function of placental pericytes in vascular health and pathology. This study aimed to investigate the angiogenic potential of human placental pericytes relative to other villous cell populations. METHODS Primary human placental pericytes, human umbilical vein endothelial cells (HUVEC), and BeWo cells ( ± 20 μM forskolin) were cultured in 1 % O2 or ambient air, followed by analysis of secreted angiogenic factors (ELISA). Additionally, the placental pericytes and HUVECs were co-cultured in a 3D sprouting assay to assess the capacity of pericytes to contribute to vascular sprouts. RESULTS 1 % O2 affected secretion of angiogenic factors in placental pericytes, HUVECs, and syncytialized BeWo cells. Specifically, in placental pericytes, angiopoietin-1 (ANG1) and soluble fms-like tyrosine kinase-1 (sFLT1) were decreased, while vascular endothelial growth factor (VEGF) was increased. In HUVECS, matrix metalloproteinase-2 (MMP2), VEGF, angiopoietin-2 (ANG2), platelet-derived growth factor beta (PDGFB), placental growth factor (PlGF), and sFLT1 were increased. In syncytialized BeWo cells, VEGF, MMP2, PDGFB, PlGF, and sFLT1 secretion were increased. Placental pericytes and HUVECS colocalized to vessel sprouts in the 3-D sprouting assay. DISCUSSION Hypoxic conditions altered placental pericyte, endothelial, and syncytialized BeWo secretion of angiogenic factors. We speculate that pericyte dropout and, by extension, the loss of pericyte-derived angiogenic factors in hypoxic conditions may contribute to compromised fetal vascular development observed in placental pathologies.
Collapse
Affiliation(s)
- Megan J Morrison
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada, M5S 1A8; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada, K7L 3N6
| | - Bryony V Natale
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada, K7L 3N6
| | - Sofia Allen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada, K7L 3N6
| | - Nichole Peterson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada, K7L 3N6
| | - David R C Natale
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada, K7L 3N6.
| |
Collapse
|
30
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Zhou X, Azimi M, Handin N, Riselli A, Vora B, Chun E, Yee SW, Artursson P, Giacomini KM. Proteomic Profiling Reveals Age-Related Changes in Transporter Proteins in the Human Blood-Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.604313. [PMID: 39091855 PMCID: PMC11291171 DOI: 10.1101/2024.07.26.604313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The Blood-Brain Barrier (BBB) is a crucial, selective barrier that regulates the entry of molecules including nutrients, environmental toxins, and therapeutic medications into the brain. This function relies heavily on brain endothelial cell proteins, particularly transporters and tight junction proteins. The BBB continues to develop postnatally, adapting its selective barrier function across different developmental phases, and alters with aging and disease. Here we present a global proteomics analysis focused on the ontogeny and aging of proteins in human brain microvessels (BMVs), predominantly composed of brain endothelial cells. Our proteomic profiling quantified 6,223 proteins and revealed possible age-related alteration in BBB permeability due to basement membrane component changes through the early developmental stage and age-dependent changes in transporter expression. Notable changes in expression levels were observed with development and age in nutrient transporters and transporters that play critical roles in drug disposition. This research 1) provides important information on the mechanisms that drive changes in the metabolic content of the brain with age and 2) enables the creation of physiologically based pharmacokinetic models for CNS drug distribution across different life stages.
Collapse
Affiliation(s)
- Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Mina Azimi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Bianca Vora
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Eden Chun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| |
Collapse
|
33
|
Fazzari E, Azizad DJ, Yu K, Ge W, Li MX, Nano PR, Kan RL, Tum HA, Tse C, Bayley NA, Haka V, Cadet D, Perryman T, Soto JA, Wick B, Raleigh DR, Crouch EE, Patel KS, Liau LM, Deneen B, Nathanson DA, Bhaduri A. Glioblastoma Neurovascular Progenitor Orchestrates Tumor Cell Type Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604840. [PMID: 39091877 PMCID: PMC11291138 DOI: 10.1101/2024.07.24.604840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a neurovascular progenitor (NVP). Following in situ validation and molecular characterization of NVP cells in GBM patient samples, we characterized their function in vivo. Genetic depletion of NVP cells resulted in altered tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a paradigm by which cell type-specific interrogation of tumor populations can be used to study functional heterogeneity and therapeutically targetable vulnerabilities of GBM.
Collapse
Affiliation(s)
- Elisa Fazzari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Daria J Azizad
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Weihong Ge
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Matthew X Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Hong A Tum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vjola Haka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Travis Perryman
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Jose A Soto
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Brittney Wick
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. eLife 2024; 13:RP94094. [PMID: 38985140 PMCID: PMC11236418 DOI: 10.7554/elife.94094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Amber N Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| |
Collapse
|
35
|
Cen K, Huang Y, Xie Y, Liu Y. The guardian of intracranial vessels: Why the pericyte? Biomed Pharmacother 2024; 176:116870. [PMID: 38850658 DOI: 10.1016/j.biopha.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.
Collapse
Affiliation(s)
- Kuan Cen
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YinFei Huang
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YuMin Liu
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China.
| |
Collapse
|
36
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, Miao Y, Mierke S, Kalva S, Zhu H, Gu M, Vadivelu S, Zhong S, Huang LF, Guo Z. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31:818-833.e11. [PMID: 38754427 PMCID: PMC11162335 DOI: 10.1016/j.stem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
Collapse
Affiliation(s)
- Lan Dao
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhen You
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tianyang Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hui Zhu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Yoshida
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Mierke
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Srijan Kalva
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhakar Vadivelu
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - L Frank Huang
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Petersilie L, Heiduschka S, Nelson JS, Neu LA, Le S, Anand R, Kafitz KW, Prigione A, Rose CR. Cortical brain organoid slices (cBOS) for the study of human neural cells in minimal networks. iScience 2024; 27:109415. [PMID: 38523789 PMCID: PMC10957451 DOI: 10.1016/j.isci.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Brain organoids derived from human pluripotent stem cells are a promising tool for studying human neurodevelopment and related disorders. Here, we generated long-term cultures of cortical brain organoid slices (cBOS) grown at the air-liquid interphase from regionalized cortical organoids. We show that cBOS host mature neurons and astrocytes organized in complex architecture. Whole-cell patch-clamp demonstrated subthreshold synaptic inputs and action potential firing of neurons. Spontaneous intracellular calcium signals turned into synchronous large-scale oscillations upon combined disinhibition of NMDA receptors and blocking of GABAA receptors. Brief metabolic inhibition to mimic transient energy restriction in the ischemic brain induced reversible intracellular calcium loading of cBOS. Moreover, metabolic inhibition induced a reversible decline in neuronal ATP as revealed by ATeam1.03YEMK. Overall, cBOS provide a powerful platform to assess morphological and functional aspects of human neural cells in intact minimal networks and to address the pathways that drive cellular damage during brain ischemia.
Collapse
Affiliation(s)
- Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Heiduschka
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
38
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
39
|
Clarke MT, Remesal L, Lentz L, Tan DJ, Young D, Thapa S, Namuduri SR, Borges B, Kirn G, Valencia J, Lopez ME, Lui JH, Shiow LR, Dindot S, Villeda S, Sanders SJ, MacKenzie TC. Prenatal delivery of a therapeutic antisense oligonucleotide achieves broad biodistribution in the brain and ameliorates Angelman syndrome phenotype in mice. Mol Ther 2024; 32:935-951. [PMID: 38327047 PMCID: PMC11163203 DOI: 10.1016/j.ymthe.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Angelman syndrome (AS), an early-onset neurodevelopmental disorder characterized by abnormal gait, intellectual disabilities, and seizures, occurs when the maternal allele of the UBE3A gene is disrupted, since the paternal allele is silenced in neurons by the UBE3A antisense (UBE3A-AS) transcript. Given the importance of early treatment, we hypothesized that prenatal delivery of an antisense oligonucleotide (ASO) would downregulate the murine Ube3a-AS, resulting in increased UBE3A protein and functional rescue. Using a mouse model with a Ube3a-YFP allele that reports on-target ASO activity, we found that in utero, intracranial (IC) injection of the ASO resulted in dose-dependent activation of paternal Ube3a, with broad biodistribution. Accordingly, in utero injection of the ASO in a mouse model of AS also resulted in successful restoration of UBE3A and phenotypic improvements in treated mice on the accelerating rotarod and fear conditioning. Strikingly, even intra-amniotic (IA) injection resulted in systemic biodistribution and high levels of UBE3A reactivation throughout the brain. These findings offer a novel strategy for early treatment of AS using an ASO, with two potential routes of administration in the prenatal window. Beyond AS, successful delivery of a therapeutic ASO into neurons has implications for a clinically feasible prenatal treatment for numerous neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria T Clarke
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
| | - Laura Remesal
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Lea Lentz
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - David Young
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, 138632, Singapore, Singapore
| | - Slesha Thapa
- BioMarin Pharmaceutical, San Rafael, California, USA
| | - Shalini R Namuduri
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
| | - Georgia Kirn
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jasmine Valencia
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA
| | | | - Jan H Lui
- BioMarin Pharmaceutical, San Rafael, California, USA
| | | | - Scott Dindot
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Saul Villeda
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Tippi C MacKenzie
- Department of Surgery, University of California San Francisco, San Francisco, California, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
40
|
Ahuja S, Adjekukor C, Li Q, Kocha KM, Rosin N, Labit E, Sinha S, Narang A, Long Q, Biernaskie J, Huang P, Childs SJ. The development of brain pericytes requires expression of the transcription factor nkx3.1 in intermediate precursors. PLoS Biol 2024; 22:e3002590. [PMID: 38683849 PMCID: PMC11081496 DOI: 10.1371/journal.pbio.3002590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/09/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.
Collapse
Affiliation(s)
- Suchit Ahuja
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Cynthia Adjekukor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Quan Long
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jeff Biernaskie
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
41
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 PMCID: PMC10969049 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| |
Collapse
|
42
|
Ouellette J, Crouch EE, Morel JL, Coelho-Santos V, Lacoste B. A Vascular-Centric Approach to Autism Spectrum Disorders. Neurosci Insights 2024; 19:26331055241235921. [PMID: 38476695 PMCID: PMC10929024 DOI: 10.1177/26331055241235921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Brain development and function are highly reliant on adequate establishment and maintenance of vascular networks. Early impairments in vascular health can impact brain maturation and energy metabolism, which may lead to neurodevelopmental anomalies. Our recent work not only provides novel insights into the development of cerebrovascular networks but also emphasizes the importance of their well-being for proper brain maturation. In particular, we have demonstrated that endothelial dysfunction in autism spectrum disorders (ASD) mouse models is causally related to altered behavior and brain metabolism. In the prenatal human brain, vascular cells change metabolic states in the second trimester. Such findings highlight the need to identify new cellular and molecular players in neurodevelopmental disorders, raising awareness about the importance of a healthy vasculature for brain development. It is thus essential to shift the mostly neuronal point of view in research on ASD and other neurodevelopmental disorders to also include vascular and metabolic features.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Luc Morel
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- University Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
43
|
Crouch EE, Diafos LN, Valenzuela EJ, Wedderburn-Pugh K, Birrueta JO, Caston J, Joseph T, Andrews MG, Bhaduri A, Huang EJ. Profiling human brain vascular cells using single-cell transcriptomics and organoids. Nat Protoc 2024; 19:603-628. [PMID: 38102365 PMCID: PMC11537086 DOI: 10.1038/s41596-023-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
Angiogenesis and neurogenesis are functionally interconnected during brain development. However, the study of the vasculature has trailed other brain cell types because they are delicate and of low abundance. Here we describe a protocol extension to purify prenatal human brain endothelial and mural cells with FACS and utilize them in downstream applications, including transcriptomics, culture and organoid transplantation. This approach is simple, efficient and generates high yields from small amounts of tissue. When the experiment is completed within a 24 h postmortem interval, these healthy cells produce high-quality data in single-cell transcriptomics experiments. These vascular cells can be cultured, passaged and expanded for many in vitro assays, including Matrigel vascular tube formation, microfluidic chambers and metabolic measurements. Under these culture conditions, primary vascular cells maintain expression of cell-type markers for at least 3 weeks. Finally, we describe how to use primary vascular cells for transplantation into cortical organoids, which captures key features of neurovascular interactions in prenatal human brain development. In terms of timing, tissue processing and staining requires ~3 h, followed by an additional 3 h of FACS. The transplant procedure of primary, FACS-purified vascular cells into cortical organoids requires an additional 2 h. The time required for different transcriptomic and epigenomic protocols can vary based on the specific application, and we offer strategies to mitigate batch effects and optimize data quality. In sum, this vasculo-centric approach offers an integrated platform to interrogate neurovascular interactions and human brain vascular development.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kaylee Wedderburn-Pugh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jaela Caston
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Madeline G Andrews
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Aparna Bhaduri
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA.
| |
Collapse
|
44
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
46
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
47
|
van Splunder H, Villacampa P, Martínez-Romero A, Graupera M. Pericytes in the disease spotlight. Trends Cell Biol 2024; 34:58-71. [PMID: 37474376 PMCID: PMC10777571 DOI: 10.1016/j.tcb.2023.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
Pericytes are known as the mural cells in small-caliber vessels that interact closely with the endothelium. Pericytes play a key role in vasculature formation and homeostasis, and when dysfunctional contribute to vasculature-related diseases such as diabetic retinopathy and neurodegenerative conditions. In addition, significant extravascular roles of pathological pericytes are being discovered with relevant implications for cancer and fibrosis. Pericyte research is challenged by the lack of consistent molecular markers and clear discrimination criteria versus other (mural) cells. However, advances in single-cell approaches are uncovering and clarifying mural cell identities, biological functions, and ontogeny across organs. We discuss the latest developments in pericyte pathobiology to inform future research directions and potential outcomes.
Collapse
Affiliation(s)
- Hielke van Splunder
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Carrer de la Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Anabel Martínez-Romero
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain; Institución Catalana de Investigación y Estudios Avanzados (ICREA), Passeig de Lluís Companys 23, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029 Madrid, Spain.
| |
Collapse
|
48
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
49
|
Zhang C, Hu Y, Gao L. Defining and identifying cell sub-crosstalk pairs for characterizing cell-cell communication patterns. Sci Rep 2023; 13:15746. [PMID: 37735248 PMCID: PMC10514069 DOI: 10.1038/s41598-023-42883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Current cell-cell communication analysis focuses on quantifying intercellular interactions at cell type level. In the tissue microenvironment, one type of cells could be divided into multiple cell subgroups that function differently and communicate with other cell types or subgroups via different ligand-receptor-mediated signaling pathways. Given two cell types, we define a cell sub-crosstalk pair (CSCP) as a combination of two cell subgroups with strong and similar intercellular crosstalk signals and identify CSCPs based on coupled non-negative matrix factorization. Using single-cell spatial transcriptomics data of mouse olfactory bulb and visual cortex, we find that cells of different types within CSCPs are significantly spatially closer with each other than those in the whole single-cell spatial map. To demonstrate the utility of CSCPs, we apply 13 cell-cell communication analysis methods to sampled single-cell transcriptomics datasets at CSCP level and reveal ligand-receptor interactions masked at cell type level. Furthermore, by analyzing single-cell transcriptomics data from 29 breast cancer patients with different immunotherapy responses, we find that CSCPs are useful predictive features to discriminate patients responding to anti-PD-1 therapy from non-responders. Taken together, partitioning a cell type pair into CSCPs enables fine-grained characterization of cell-cell communication in tissue and tumor microenvironments.
Collapse
Affiliation(s)
- Chenxing Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
50
|
Raleigh D, Mirchia K, Choudhury A, Joseph T, Birrueta J, Phillips J, Bhaduri A, Crouch E, Perry A. Meningeal solitary fibrous tumor cell states phenocopy cerebral vascular development and homeostasis. RESEARCH SQUARE 2023:rs.3.rs-3164953. [PMID: 37546798 PMCID: PMC10402198 DOI: 10.21203/rs.3.rs-3164953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with hematogenous metastasis, and the cell states and spatial transcriptomic architecture of SFTs are unknown. Here we use single-cell and spatial RNA sequencing to show SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development and homeostasis. Our results shed light on pathways underlying SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell and spatial transcriptomic data from human cancers and normal tissues.
Collapse
|