1
|
Khoroshkin M, Zinkevich A, Aristova E, Yousefi H, Lee SB, Mittmann T, Manegold K, Penzar D, Raleigh DR, Kulakovskiy IV, Goodarzi H. A generative framework for enhanced cell-type specificity in rationally designed mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.31.630783. [PMID: 39803435 PMCID: PMC11722239 DOI: 10.1101/2024.12.31.630783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
mRNA delivery offers new opportunities for disease treatment by directing cells to produce therapeutic proteins. However, designing highly stable mRNAs with programmable cell type-specificity remains a challenge. To address this, we measured the regulatory activity of 60,000 5' and 3' untranslated regions (UTRs) across six cell types and developed PARADE (Prediction And RAtional DEsign of mRNA UTRs), a generative AI framework to engineer untranslated RNA regions with tailored cell type-specific activity. We validated PARADE by testing 15,800 de novo-designed sequences across these cell lines and identified many sequences that demonstrated superior specificity and activity compared to existing RNA therapeutics. mRNAs with PARADE-engineered UTRs also exhibited robust tissue-specific activity in animal models, achieving selective expression in the liver and spleen. We also leveraged PARADE to enhance mRNA stability, significantly increasing protein output and therapeutic durability in vivo. These advancements translated to notable increases in therapeutic efficacy, as PARADE-designed UTRs in oncosuppressor mRNAs, namely PTEN and P16, effectively reduced tumor growth in patient-derived neuroglioma xenograft models and orthotopic mouse models. Collectively, these findings establish PARADE as a versatile platform for designing safer, more precise, and highly stable mRNA therapies.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Arsenii Zinkevich
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Elizaveta Aristova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Hassan Yousefi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B. Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tabea Mittmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Karoline Manegold
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dmitry Penzar
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - David R. Raleigh
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Ivan V. Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| |
Collapse
|
2
|
Tsukamoto K, Yamashita A, Maeki M, Tokeshi M, Imai H, Fukao A, Fujiwara T, Okudera K, Mizuki N, Okuda K, Shimada M. Enhanced Broad-Spectrum Efficacy of an L2-Based mRNA Vaccine Targeting HPV Types 6, 11, 16, 18, with Cross-Protection Against Multiple Additional High-Risk Types. Vaccines (Basel) 2024; 12:1239. [PMID: 39591142 PMCID: PMC11598371 DOI: 10.3390/vaccines12111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Current L1-based human papillomavirus (HPV) vaccines provide type-specific protection but offer limited cross-protection against non-vaccine HPV types. Therefore, developing a broad-spectrum HPV vaccine is highly desirable. METHODS In this study, we optimized mRNA constructs and developed a multivalent L2-based mRNA vaccine encoding L2 aa 2-130, which includes all known neutralizing epitopes from four prevalent HPV types (HPV-6, -11, -16, and -18). We evaluated its immunogenicity in a mouse model and compared the efficacy of a commercially available mRNA delivery reagent with a custom-synthesized lipid nanoparticle (LNP) formulation. RESULTS We identified that a construct containing E01 (a 5'-untranslated region) and SL2.7 (a poly(A) polymerase recruitment sequence) significantly increased protein expression. The L2-based mRNA vaccine induced robust and long-lasting humoral immune responses, with significant titers of cross-reactive serum IgG antibodies against L2 epitopes. Notably, the vaccine elicited cross-neutralizing antibodies and conferred cross-protective immunity not only against vaccine-targeted HPV types but also against non-vaccine HPV types, following intravaginal challenge in mice. We also found that LNP delivered mRNA more effectively in vivo. CONCLUSIONS The L2-based mRNA vaccine developed in this study shows significant potential for broad-spectrum protection against multiple HPV types. This approach offers a promising strategy for reducing the global burden of HPV-associated cancers.
Collapse
Affiliation(s)
- Kosuke Tsukamoto
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (K.T.)
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho 903-0215, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirotatsu Imai
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho 903-0215, Japan
| | - Akira Fukao
- Department of Biochemistry, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Toshinobu Fujiwara
- Department of Biochemistry, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Koji Okudera
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (K.T.)
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
Lee H, Park SK, Lim J. Dual Roles of Host Zinc Finger Proteins in Viral RNA Regulation: Decay or Stabilization. Int J Mol Sci 2024; 25:11138. [PMID: 39456919 PMCID: PMC11508327 DOI: 10.3390/ijms252011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Host defense mechanisms against viral infections have been extensively studied over the past few decades and continue to be a crucial area of research in understanding human diseases caused by acute and chronic viral infections. Among various host mechanisms, recent findings have revealed that several host RNA-binding proteins play pivotal roles in regulating viral RNA to suppress viral replication and eliminate infection. We have focused on identifying host proteins that function as regulators of viral RNA, specifically targeting viral components without adversely affecting host cells. Interestingly, these proteins exhibit dual roles in either restricting viral infections or promoting viral persistence by interacting with cofactors to either degrade viral genomes or stabilize them. In this review, we discuss RNA-binding zinc finger proteins as viral RNA regulators, classified into two major types: ZCCCH-type and ZCCHC-type. By highlighting the functional diversity of these zinc finger proteins, this review provides insights into their potential as therapeutic targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Hyokyoung Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
5
|
Deng J, Li X, Yu H, Yang L, Wang Z, Yi W, Liu Y, Xiao W, Xiang H, Xie Z, Lv D, Ouyang H, Pang D, Yuan H. Accelerated discovery and miniaturization of novel single-stranded cytidine deaminases. Nucleic Acids Res 2024; 52:11188-11202. [PMID: 39271120 PMCID: PMC11472066 DOI: 10.1093/nar/gkae800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cytidine base editors (CBEs) hold significant potential in genetic disease treatment and in breeding superior traits into animals. However, their large protein sizes limit their delivery by adeno-associated virus (AAV), given its packing capacity of <4.7 kb. To overcome this, we employed a web-based fast generic discovery (WFG) strategy, identifying several small ssDNA deaminases (Sdds) and constructing multiple Sdd-CBE 1.0 versions. SflSdd-CBE 1.0 demonstrated high C-to-T editing efficiency, comparable to AncBE4max, while SviSdd-CBE 1.0 exhibited moderate C-to-T editing efficiency with a narrow editing window (C3 to C5). Utilizing AlphaFold2, we devised a one-step miniaturization strategy, reducing the size of Sdds while preserving their efficiency. Notably, we administered AAV8 expressing PCSK9 targeted sgRNA and SflSdd-CBEs (nSaCas9) 2.0 into mice, leading to gene-editing events (with editing efficiency up to 15%) and reduced serum cholesterol levels, underscoring the potential of Sdds in gene therapy. These findings offer new single-stranded editing tools for the treatment of rare genetic diseases.
Collapse
Affiliation(s)
- Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xueyuan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ziru Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenfeng Yi
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ying Liu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenyu Xiao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongyong Xiang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| |
Collapse
|
6
|
Kim J. Circular RNAs: Novel Players in Cancer Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:10121. [PMID: 39337606 PMCID: PMC11432211 DOI: 10.3390/ijms251810121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that have emerged as pivotal players in gene regulation. Our understanding of circRNAs has greatly expanded over the last decade, with studies elucidating their biology and exploring their therapeutic applications. In this review, we provide an overview of the current understanding of circRNA biogenesis, outline their mechanisms of action in cancer, and assess their clinical potential as biomarkers. Furthermore, we discuss circRNAs as a potential therapeutic strategy, including recent advances in circRNA production and translation, along with proof-of-concept preclinical studies of cancer vaccines.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Li Y, Lemon SM. Biochemical analysis of the host factor activity of ZCCHC14 in hepatitis A virus replication. J Virol 2024; 98:e0005724. [PMID: 38501662 PMCID: PMC11019785 DOI: 10.1128/jvi.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Relatively little is known of the mechanisms underlying hepatitis A virus (HAV) genome replication. Unlike other well-studied picornaviruses, HAV RNA replication requires the zinc finger protein ZCCHC14 and non-canonical TENT4 poly(A) polymerases with which it forms a complex. The ZCCHC14-TENT4 complex binds to a stem-loop located within the internal ribosome entry site (IRES) in the 5' untranslated RNA (5'UTR) and is essential for viral RNA synthesis, but the underlying mechanism is unknown. Here, we describe how different ZCCHC14 domains contribute to its RNA-binding, TENT4-binding, and HAV host factor activities. We show that the RNA-binding activity of ZCCHC14 requires both a sterile alpha motif (SAM) and a downstream unstructured domain (D4) and that ZCCHC14 contains two TENT4-binding sites: one at the N-terminus and the other around D4. Both RNA-binding and TENT4-binding are required for HAV host factor activity of ZCCHC14. We also demonstrate that the location of the ZCCHC14-binding site within the 5'UTR is critical for its function. Our study provides a novel insight into the function of ZCCHC14 and helps elucidate the mechanism of the ZCCHC14-TENT4 complex in HAV replication.IMPORTANCEThe zinc finger protein ZCCHC14 is an essential host factor for both hepatitis A virus (HAV) and hepatitis B virus (HBV). It recruits the non-canonical TENT4 poly(A) polymerases to viral RNAs and most likely also a subset of cellular mRNAs. Little is known about the details of these interactions. We show here the functional domains of ZCCHC14 that are involved in binding to HAV RNA and interactions with TENT4 and describe previously unrecognized peptide sequences that are critical for the HAV host factor activity of ZCCHC14. Our study advances the understanding of the ZCCHC14-TENT4 complex and how it functions in regulating viral and cellular RNAs.
Collapse
Affiliation(s)
- You Li
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M. Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Mouzannar K, Schauer A, Liang TJ. The Post-Transcriptional Regulatory Element of Hepatitis B Virus: From Discovery to Therapy. Viruses 2024; 16:528. [PMID: 38675871 PMCID: PMC11055085 DOI: 10.3390/v16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.
Collapse
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Lee SM, Koo B, Carré C, Fischer A, He C, Kumar A, Liu K, Meyer KD, Ming GL, Peng J, Roignant JY, Storkebaum E, Sun S, De Pietri Tonelli D, Wang Y, Weng YL, Pulvirenti L, Shi Y, Yoon KJ, Song H. Exploring the brain epitranscriptome: perspectives from the NSAS summit. Front Neurosci 2023; 17:1291446. [PMID: 37928731 PMCID: PMC10625424 DOI: 10.3389/fnins.2023.1291446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.
Collapse
Affiliation(s)
- Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bonsang Koo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, United States
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kathy Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, TN, United States
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, TN, United States
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Staudingerweg, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, United States
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States
| | | | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Weingarten-Gabbay S, Bauer MR, Stanton AC, Klaeger S, Verzani EK, López D, Clauser KR, Carr SA, Abelin JG, Rice CM, Sabeti PC. Pan-viral ORFs discovery using Massively Parallel Ribosome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559641. [PMID: 37808651 PMCID: PMC10557741 DOI: 10.1101/2023.09.26.559641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unveiling the complete proteome of viruses is crucial to our understanding of the viral life cycle and interaction with the host. We developed Massively Parallel Ribosome Profiling (MPRP) to experimentally determine open reading frames (ORFs) in 20,170 designed oligonucleotides across 679 human-associated viral genomes. We identified 5,381 ORFs, including 4,208 non-canonical ORFs, and show successful detection of both annotated coding sequences (CDSs) and reported non-canonical ORFs. By examining immunopeptidome datasets of infected cells, we found class I human leukocyte antigen (HLA-I) peptides originating from non-canonical ORFs identified through MPRP. By inspecting ribosome occupancies on the 5'UTR and CDS regions of annotated viral genes, we identified hundreds of upstream ORFs (uORFs) that negatively regulate the synthesis of canonical viral proteins. The unprecedented source of viral ORFs across a wide range of viral families, including highly pathogenic viruses, expands the repertoire of vaccine targets and exposes new cis-regulatory sequences in viral genomes.
Collapse
|
11
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|