Castonguay AC, Olson LJ, Dahms NM. Mannose 6-phosphate receptor homology (MRH) domain-containing lectins in the secretory pathway.
Biochim Biophys Acta Gen Subj 2011;
1810:815-26. [PMID:
21723917 DOI:
10.1016/j.bbagen.2011.06.016]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND
The mannose 6-phosphate receptor homology (MRH) domain-containing family of proteins, which include recycling receptors (mannose 6-phosphate receptors, MPRs), resident endoplasmic reticulum (ER) proteins (glucosidase II β-subunit, XTP3-B, OS-9), and a Golgi glycosyltransferase (GlcNAc-phosphotransferase γ-subunit), are characterized by the presence of one or more MRH domains. Many MRH domains act as lectins and bind specific phosphorylated (MPRs) or non-phosphorylated (glucosidase II β-subunit, XTP3-B and OS-9) high mannose-type N-glycans. The MPRs are the only proteins known to bind mannose 6-phosphate (Man-6-P) residues via their MRH domains.
SCOPE OF REVIEW
Recent biochemical and structural studies that have provided valuable insight into the glycan specificity and mechanisms of carbohydrate recognition by this diverse group of MRH domain-containing proteins are highlighted.
MAJOR CONCLUSIONS
Currently, three-dimensional structures are known for ten MRH domains, revealing the conservation of a similar fold. OS-9 and the MPRs use the same four residues (Gln, Arg, Glu, and Tyr) to bind mannose.
GENERAL SIGNIFICANCE
The MRH domain-containing proteins play key roles in the secretory pathway: glucosidase II, XTP3-B, and OS-9 are involved in the recognition of nascent glycoproteins, whereas the MPRs play an essential role in lysosome biogenesis by targeting Man-6-P-containing lysosomal enzymes to the lysosome.
Collapse