1
|
Plokhovska SH, Shadrina RY, Kravets OA, Yemets AI, Blume YB. The Role of Nitric Oxide in the Arabidopsis thaliana Response to Simulated Microgravity and the Involvement of Autophagy in This Process. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Li F, Ye Y, Lei X, Zhang W. Effects of Microgravity on Early Embryonic Development and Embryonic Stem Cell Differentiation: Phenotypic Characterization and Potential Mechanisms. Front Cell Dev Biol 2021; 9:797167. [PMID: 34926474 PMCID: PMC8675004 DOI: 10.3389/fcell.2021.797167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
With the development of science and technology, mankind’s exploration of outer space has increased tremendously. Settling in outer space or on other planets could help solve the Earth’s resource crisis, but such settlement will first face the problem of reproduction. There are considerable differences between outer space and the Earth’s environment, with the effects of gravity being one of the most significant. Studying the possible effects and underlying mechanisms of microgravity on embryonic stem cell (ESC) differentiation and embryonic development could help provide solutions to healthy living and reproduction in deep space. This article summarizes recent research progress on the effects of microgravity on ESCs and early embryonic development and proposes hypotheses regarding the potential mechanisms. In addition, we discuss the controversies and key questions in the field and indicate directions for future research.
Collapse
Affiliation(s)
- Feng Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.,Department of Physiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Rac1/Wave2/Arp3 Pathway Mediates Rat Blood-Brain Barrier Dysfunction under Simulated Microgravity Based on Proteomics Strategy. Int J Mol Sci 2021; 22:ijms22105165. [PMID: 34068233 PMCID: PMC8153163 DOI: 10.3390/ijms22105165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
The blood-brain barrier (BBB) is critical to maintaining central nervous system (CNS) homeostasis. However, the effects of microgravity (MG) on the BBB remain unclear. This study aimed to investigate the influence of simulated MG (SMG) on the BBB and explore its potential mechanism using a proteomic approach. Rats were tail-suspended to simulate MG for 21 days. SMG could disrupt the BBB, including increased oxidative stress levels, proinflammatory cytokine levels, and permeability, damaged BBB ultrastructure, and downregulated tight junctions (TJs) and adherens junctions (AJs) protein expression in the rat brain. A total of 554 differentially expressed proteins (DEPs) induced by SMG were determined based on the label-free quantitative proteomic strategy. The bioinformatics analysis suggested that DEPs were mainly enriched in regulating the cell–cell junction and cell–extracellular matrix biological pathways. The inhibited Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (Wave2)/actin-related protein 3 (Arp3) pathway and the decreased ratio of filamentous actin (F-actin) to globular actin contributed to BBB dysfunction induced by SMG. In the human brain microvascular endothelial cell (HBMECs), SMG increased the oxidative stress levels and proinflammatory cytokine levels, promoted apoptosis, and arrested the cell cycle phase. Expression of TJs and AJs proteins were downregulated and the distribution of F-actin was altered in SMG-treated HBMECs. The key role of the Rac1/Wave2/Arp3 pathway in BBB dysfunction was confirmed in HBMECs with a specific Rac1 agonist. This study demonstrated that SMG induced BBB dysfunction and revealed that Rac1/Wave2/Arp3 could be a potential signaling pathway responsible for BBB disruption under SMG. These results might shed a novel light on maintaining astronaut CNS homeostasis during space travel.
Collapse
|
4
|
Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2015; 137:3-18. [PMID: 26571091 DOI: 10.1016/j.jprot.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy
| | - Giuseppe Pani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Barbara Pascucci
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Sandip A Ghuge
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, V.le Forlanini 8, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy.
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
5
|
Hu LF, Li JB, Qian AR, Wang F, Shang P. Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol Int 2014; 39:364-72. [PMID: 25318973 DOI: 10.1002/cbin.10391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/17/2014] [Indexed: 01/29/2023]
Abstract
Microgravity decreases the differentiation of osteoblast. However, as this process is multistage and complex, the mechanism by which microgravity inhibits osteoblast differentiation is still unclear. We have previously found that 24 h acute treatment of simulated microgravity (SM) with a random positioning machine (RPM) significantly inhibited the differentiation of preosteoblasts and have explored whether osteoblasts show different response to microgravity condition at other stages, such as the mineralizing-stage. Murine MC3T3-E1 preosteoblasts induced for osteogenic differentiation for seven days were cultured either under normal gravity or SM conditions for 24 h. SM treatment significantly suppressed mineralized nodule formation. Alkaline phosphatase (ALP) activity was dramatically decreased, and the expression of ALP gene was downregulated. Expression of well-known markers and regulators for osteoblasts differentiation, including osteocalcin (OC), type I collagen α1 (Col Iα1), dentin matrix protein 1 (DMP1) and runt-related transcription factor 2 (Runx2), were downregulated. Western blot analysis showed that the phosphorylated extracellular signal-regulated kinase (p-ERK) level was lower under SM condition. Thus, the initiation of osteoblast mineralization is suppressed by SM condition, and the suppression may be through the regulation of ALP activity and the osteogenic gene expression. ERK signaling might be involved in this process. These results are relevant to the decrease of osteoblast maturation and bone formation under microgravity condition.
Collapse
Affiliation(s)
- Li-fang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | | | | | | | | |
Collapse
|
6
|
Inglis PW, Ciampi AY, Salomão AN, Costa TDSA, Azevedo VCR. Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity. Genet Mol Biol 2013; 37:81-92. [PMID: 24688295 PMCID: PMC3958331 DOI: 10.1590/s1415-47572014000100014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/02/2013] [Indexed: 11/21/2022] Open
Abstract
Seeds of a tropical tree species from Brazil, Astronium fraxinifolium, or zebrawood, were germinated, for the first time in microgravity, aboard the International Space Station for nine days. Following three days of subsequent growth under normal terrestrial gravitational conditions, greater root length and numbers of secondary roots was observed in the microgravity-treated seedlings compared to terrestrially germinated controls. Suppression subtractive hybridization of cDNA and EST analysis were used to detect differential gene expression in the microgravity-treated seedlings in comparison to those initially grown in normal gravity (forward subtraction). Despite their return to, and growth in normal gravity, the subtracted library derived from microgravity-treated seedlings was enriched in known microgravity stress-related ESTs, corresponding to large and small heat shock proteins, 14-3-3-like protein, polyubiquitin, and proteins involved in glutathione metabolism. In contrast, the reverse-subtracted library contained a comparatively greater variety of general metabolism-related ESTs, but was also enriched for peroxidase, possibly indicating the suppression of this protein in the microgravity-treated seedlings. Following continued growth for 30 days, higher concentrations of total chlorophyll were detected in the microgravity-exposed seedlings.
Collapse
Affiliation(s)
- Peter W Inglis
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Ana Y Ciampi
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Antonieta N Salomão
- Laboratorio de Sementes, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Tânia da S A Costa
- Laboratório de Química de Produtos Naturais, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Vânia C R Azevedo
- Laboratorio de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| |
Collapse
|
7
|
Effects of long-term space flight on erythrocytes and oxidative stress of rodents. PLoS One 2012; 7:e32361. [PMID: 22412864 PMCID: PMC3296700 DOI: 10.1371/journal.pone.0032361] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 01/25/2012] [Indexed: 11/19/2022] Open
Abstract
Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants.
Collapse
|
8
|
Abstract
Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.
Collapse
|
9
|
Berselli PVR, Zava S, Montorfano G, Corsetto PA, Krzyzanowska J, Oleszek W, Berra B, Rizzo AM. A mint purified extract protects human keratinocytes from short-term, chemically induced oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11428-11434. [PMID: 20949967 DOI: 10.1021/jf1020285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oxidative stress is strictly correlated to the pathogenesis of many diseases, and a diet rich in fruits and vegetables, or adequately integrated, is currently considered to be a protective and preventive factor. This study aimed to analyze the efficacy of a 1 h preincubation with the highest nontoxic dose of a characterized Mentha longifolia extract (80 μg/mL) in protecting human keratinocytes (NCTC2544) from chemically induced oxidative stress (500 μM H2O2 for 2, 16, and 24 h). As reference synthetic pure compounds rosmarinic acid (360.31 μg/mL), a major mint phenolic constituent, and resveratrol (31.95 mg/mL), a well-known antioxidant, were used. Cellular viability was significantly protected by mint, which limited protein and DNA damage, decreased lipid peroxidation, and preserved glutathione and superoxide dismutase activity in the shorter phases of oxidative stress induction, in extents comparable to or better than those of pure compounds. These data suggest that mint use as only a flavoring has to be revised, taking into consideration its enrichment in foodstuff and cosmetics.
Collapse
Affiliation(s)
- Patrizia Valeria Rita Berselli
- Dipartimento di Scienze Molecolari Applicate ai Biosistemi (DISMAB), Università degli Studi di Milano, via Trentacoste 2, 20134 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|