1
|
Wang S, Xu Y, Wang L, Lin J, Xu C, Zhao X, Zhang H. TolDC Restores the Balance of Th17/Treg via Aryl Hydrocarbon Receptor to Attenuate Colitis. Inflamm Bowel Dis 2024; 30:1546-1555. [PMID: 38431309 DOI: 10.1093/ibd/izae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND Tolerogenic dendritic cells (TolDCs) have been evidenced to trigger regulatory T cell's (Treg's) differentiation and be involved in the pathogenesis of Crohn's disease (CD). Aryl hydrocarbon receptor (AhR) plays a crucial role in the differentiation of TolDCs, although the mechanism remains vague. This study aimed to evaluate the role of AhR in TolDCs formation, which may affect Th17/Treg balance in CD. METHODS Colon biopsy specimens were obtained from healthy controls and patients with CD. Wild type (WT) and AhR-/- mice were induced colitis by drinking dextran sulphate sodium (DSS) with or without 6-formylindolo 3,2-b carbazole (FICZ) treatment. Wild type and AhR-/- bone marrow-derived cells (BMDCs) were cultured under TolDCs polarization condition. Ratios of DCs surface markers were determined by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was performed to quantify the levels of interleukin (IL)-1β, transforming growth factor (TGF)-β and IL-10. Tolerogenic dendritic cells differentiated from BMDCs of WT or AhR-/- mice were adoptively transferred to DSS-induced WT colitis mice. RESULTS Patients with CD showed less AhR expression and activation in their inflamed colon regions. Compared with WT mice, AhR-/- mice experienced more severe colitis. Tolerogenic dendritic cells and Tregs were both decreased in the colon of AhR-/- colitis mice, while Th17 cells were upregulated. In vitro, compared with WT DCs, AhR-deficient DCs led to less TolDC formation. Furthermore, intestinal inflammation in WT colitis mice, which transferred with AhR-/- TolDCs, showed no obvious improvement compared with those transferred with WT TolDCs, as evidenced by no rescues of Th17/Treg balance. CONCLUSIONS Activation of AhR attenuates experimental colitis by modulating the balance of TolDCs and Th17/Treg. The AhR modulation of TolDCs may be a viable therapeutic approach for CD.
Collapse
Affiliation(s)
- Shu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Ying Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Junjie Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Chenjing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Xiaojing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Hongjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
3
|
Su W, Che L, Liao W, Huang H. The RNA m 6A writer METTL3 in tumor microenvironment: emerging roles and therapeutic implications. Front Immunol 2024; 15:1335774. [PMID: 38322265 PMCID: PMC10845340 DOI: 10.3389/fimmu.2024.1335774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Weiqi Su
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Qian D, Liu Y, Zheng J, Cai J. Dendritic cell therapy for neurospoagioma: Immunomodulation mediated by tumor vaccine. Cell Death Discov 2024; 10:11. [PMID: 38184649 PMCID: PMC10771477 DOI: 10.1038/s41420-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Neurospagioma, arising from different glial cells such as astrocytes, oligodendrocytes, and ependymal cells, stands as the prevalent intracranial tumor within the central nervous system. Among its variants, glioblastoma (GBM) represents the most aggressive form, characterized by a notably high occurrence rate and a discouragingly low survival prognosis. The formidable challenge posed by glioblastoma underscores its critical importance as a life-threatening ailment. Currently, clinical approaches often involve surgical excision along with a combination of radiotherapy and chemotherapy. However, these treatments frequently result in a notable recurrence rate, accompanied by substantial adverse effects that significantly compromise the overall prognosis. Hence, there is a crucial need to investigate novel and dependable treatment strategies. Dendritic cells (DCs), being specialized antigen-presenting cells (APCs), hold a significant position in both innate and adaptive immune responses. Presently, DC vaccines have gained widespread application in the treatment of various tumors, including neurospoagioma. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccines in neurospoagioma as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China.
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Jie Zheng
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
5
|
Guha A, Goswami KK, Sultana J, Ganguly N, Choudhury PR, Chakravarti M, Bhuniya A, Sarkar A, Bera S, Dhar S, Das J, Das T, Baral R, Bose A, Banerjee S. Cancer stem cell-immune cell crosstalk in breast tumor microenvironment: a determinant of therapeutic facet. Front Immunol 2023; 14:1245421. [PMID: 38090567 PMCID: PMC10711058 DOI: 10.3389/fimmu.2023.1245421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is globally one of the leading killers among women. Within a breast tumor, a minor population of transformed cells accountable for drug resistance, survival, and metastasis is known as breast cancer stem cells (BCSCs). Several experimental lines of evidence have indicated that BCSCs influence the functionality of immune cells. They evade immune surveillance by altering the characteristics of immune cells and modulate the tumor landscape to an immune-suppressive type. They are proficient in switching from a quiescent phase (slowly cycling) to an actively proliferating phenotype with a high degree of plasticity. This review confers the relevance and impact of crosstalk between immune cells and BCSCs as a fate determinant for BC prognosis. It also focuses on current strategies for targeting these aberrant BCSCs that could open avenues for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Pharmaceutical Technology Biotechnology National Institute of Pharmaceutical Education and Research (NIPER) Sahibzada Ajit Singh (S.A.S.) Nagar, Mohali, Punjab, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
6
|
Sun Z, Zhang L, Liu L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed Pharmacother 2023; 167:115574. [PMID: 37757492 DOI: 10.1016/j.biopha.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human body. They detect and process environmental signals and communicate with T cells to bridge innate and adaptive immunity. Cell activation, function, and survival are closely associated with cellular metabolism. An increasing number of studies have revealed that lipid metabolism affects DC activation as well as innate and acquired immune responses. Combining lipid metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T-cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in cancer therapy. This review summarizes the lipid metabolism of DCs under physiological conditions, analyzes the role of reprogramming the lipid metabolism of DCs in tumor immune regulation, and discusses potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Qian D, Li J, Huang M, Cui Q, Liu X, Sun K. Dendritic cell vaccines in breast cancer: Immune modulation and immunotherapy. Biomed Pharmacother 2023; 162:114685. [PMID: 37058818 DOI: 10.1016/j.biopha.2023.114685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. Although substantial progress has been made in the diagnosis and treatment of breast cancer, the efficacy and side effects of traditional treatment methods are still unsatisfactory. In recent years, immunotherapy including tumor vaccine has achieved great success in the treatment of BC. Dendritic cells (DCs) are multifunctional antigen-presenting cells that play an important role in the initiation and regulation of innate and adaptive immune responses. Numerous studies have shown that DC-based treatments might have a potential effect on BC. Among them, the clinical study of DC vaccine in BC has demonstrated considerable anti-tumor effect, and some DC vaccines have entered the stage of clinical trials. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccine in breast cancer as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Jialu Li
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
| | - Mingyao Huang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Qiuxia Cui
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China.
| | - Xiaozhen Liu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Kailv Sun
- Department of Breast Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China.
| |
Collapse
|
9
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
10
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023; 24:2413. [PMID: 36768737 PMCID: PMC9916554 DOI: 10.3390/ijms24032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
11
|
Lobognon VD, Alard JE. Could AMPs and B-cells be the missing link in understanding periodontitis? Front Immunol 2022; 13:887147. [PMID: 36211356 PMCID: PMC9532695 DOI: 10.3389/fimmu.2022.887147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Periodontal diseases are common inflammatory conditions characterized by bone loss in response to simultaneous bacterial aggression and host defenses. The etiology of such diseases is still not completely understood, however. It has been shown that specific pathogens involved in the build-up of dysbiotic biofilms participate actively in the establishment of periodontitis. This multifactorial pathology also depends on environmental factors and host characteristics, especially defenses. The immune response to the pathogens seems to be critical in preventing the disease from starting but also contributes to tissue damage. It is known that small molecules known as antimicrobial peptides (AMPs) are key actors in the innate immune response. They not only target microbes, but also act as immuno-modulators. They can help to recruit or activate cells such as neutrophils, monocytes, dendritic cells, or lymphocytes. AMPs have already been described in the periodontium, and their expression seems to be connected to disease activity. Alpha and beta defensins and LL37 are the AMPs most frequently linked to periodontitis. Additionally, leukocyte infiltrates, especially B-cells, have also been linked to the severity of periodontitis. Indeed, the particular subpopulations of B-cells in these infiltrates have been linked to inflammation and bone resorption. A link between B-cells and AMP could be relevant to understanding B-cells' action. Some AMP receptors, such as chemokines receptors, toll-like receptors, or purinergic receptors, have been shown to be expressed by B-cells. Consequently, the action of AMPs on B-cell subpopulations could participate to B-cell recruitment, their differentiation, and their implication in both periodontal defense and destruction.
Collapse
Affiliation(s)
- Vanessa Dominique Lobognon
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France
| | - Jean-Eric Alard
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France,Service d’Odontologie, University Hospital (CHU) de Brest, Brest, France,*Correspondence: Jean-Eric Alard,
| |
Collapse
|
12
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
13
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
14
|
Liao SX, Chen J, Zhang LY, Zhang J, Sun PP, Ou-Yang Y. Effects of SOCS1-overexpressing dendritic cells on Th17- and Treg-related cytokines in COPD mice. BMC Pulm Med 2022; 22:145. [PMID: 35428280 PMCID: PMC9012034 DOI: 10.1186/s12890-022-01931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background In this study, we established a chronic obstructive pulmonary disease (COPD) model by stimulating mice with cigarette smoke, and observed the effects of dendritic cells (DCs) overexpressing SOCS1 on Th17, Treg and other related cytokines in peripheral blood, bronchoalveolar lavage fluid and lung tissues of COPD mice. Methods After successfully transfecting DCs with overexpressing SOCS1 (DC-SOCS1), the mice were injected with DC-SOCS1 (1 × 106), DC-SOCS1 (2 × 106) and immature DCs (1 × 106) via tail vein on days 1 and 7 of COPD fumigation modeling. After day 28 of modeling, the peripheral blood, BALF and lung tissue samples were extracted from the mice, and the changes of DCs, Th17 and Treg cells and related cytokines were detected by immunohistochemistry, immunofluorescence, HE staining, flow cytometry and ELISA. Results The results showed that DC-SOCS1 was able to reduce the secretion of pro-inflammatory factors and increase the anti-inflammatory factors in the COPD mice, and the effect of high concentration (2 × 106 DC-SOCS1) was better than low concentration (1 × 106 DC-SOCS1). Moreover, the intervention effect was significant on day 1 compared with day 7. In the mice injected with DC-SOCS1, the expression of CD83, IL-4, Foxp3, and CCR6 was increased on day 1 than those on day 7, while IL-17 and IFN-γ was decreased. Conclusions Intervention of COPD mice with high concentrations of DCs-SOCS1 reduced pro-inflammatory factor secretion and attenuated the inflammatory response in COPD. Trial registration Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01931-1.
Collapse
|
15
|
Diehl MI, Wolf SP, Bindokas VP, Schreiber H. Automated cell cluster analysis provides insight into multi-cell-type interactions between immune cells and their targets. Exp Cell Res 2020; 393:112014. [PMID: 32439494 DOI: 10.1016/j.yexcr.2020.112014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Understanding interactions between immune cells and their targets is an important step on the path to fully characterizing the immune system, and in doing so, learning how it combats disease. Many studies of these interactions have a narrow focus, often looking only at a binary result of whether or not a specific treatment was successful or only focusing on the interactions between two individual cells. Therefore, in an effort to more comprehensively study multicellular interactions among immune cells and their targets, we used in vitro longitudinal time-lapse imaging and developed an automated cell cluster analysis tool, or macro, to investigate the formation of cell clusters. In particular, we investigated the behavior of cancer-specific CD8+ and CD4+ T cells on how they interact around their targets: cancer cells and antigen-presenting cells. The macro that we established allowed us to examine these large-scale clustering behaviors taking place between those four cell types. Thus, we were able to distinguish directed immune cell clustering from random cell movement. Furthermore, this macro can be generalized to be applicable to systems consisting of any number of differently labeled species and can be used to track clustering behaviors and compare them to randomized simulations.
Collapse
Affiliation(s)
- Markus I Diehl
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven P Wolf
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA; Institute of Immunology, Campus Buch, Charité - Universitaetsmedizin Berlin, 13125, Berlin, Germany
| | - Vytas P Bindokas
- Integrated Microscopy Core, The University of Chicago, Chicago, IL, 60637, USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology and Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
O'Brien LJ, Guillerey C, Radford KJ. Can Dendritic Cell Vaccination Prevent Leukemia Relapse? Cancers (Basel) 2019; 11:cancers11060875. [PMID: 31234526 PMCID: PMC6627518 DOI: 10.3390/cancers11060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.
Collapse
Affiliation(s)
- Liam J O'Brien
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Camille Guillerey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
17
|
Shi D, Li D, Wang Q, Kong X, Mei H, Shen Y, Liu W. Silencing SOCS1 in dendritic cells promote survival of mice with systemic Candida albicans infection via inducing Th1-cell differentiation. Immunol Lett 2018; 197:53-62. [PMID: 29581081 DOI: 10.1016/j.imlet.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022]
Abstract
Enhancing the immunity conferred by dendritic cells (DCs) to fungal infection represents a promising strategy in the number of immunocompromised individuals. In a previous study, we demonstrated that suppressor of cytokine signaling 1 (SOCS1) silencing can promote the maturation of DCs and induce an immune response against Candida albicans (C. albicans) in vitro. Herein, the effectiveness of SOCS1 suppression administered by SOCS1-siRNA-treated DCs is further evaluated in systemic candidiasis mouse model. The SOCS1-silenced DCs increase mouse survival and significantly decrease fungal colonization in the kidneys. We confirm that the serum IFN-γ levels in SOCS1-siRNA-treated mice are higher than in all other infected groups at the early stages of infection, which correlates with a higher differentiation of IFN-γ+CD4+ T cells (Th1) in the spleen. Meanwhile, the differentiation of IL-4-producing CD4+ T (Th2) or IL-17-producing CD4+ T cells (Th17 cells) remain unaffected under the same treatment, suggesting that SOCS1-silenced DCs significantly affect the IFN-γ-producing CD4+ T cells (Th1). However, at the late stages of infection when the differentiation of Th1, Th2 and Th17 cells decreases in SOCS1-silenced-DCs-treated mice, all the serum cytokines (IFN-γ, IL-4 and IL-17) are also reduced. In summary, treatment of mice with SOCS1-silenced DCs can protect mice from systemic infection during the early stages and thereby increase overall survival. We conclude that the increase in Th1 response in early stages avoids the cascade inflammatory response in later stages that is known to place such a large fungal load on the kidneys and cause subsequent death.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Shandong, PR China.
| | - Dongmei Li
- Georgetown University Medical Center, Washington D.C., USA
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China
| | - Xue Kong
- Department of Dermatology, Jining No. 1 People's Hospital, Shandong, PR China
| | - Huan Mei
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China
| | - Yongnian Shen
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China.
| |
Collapse
|
18
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
19
|
Carvalho-Costa TM, Mendes MT, da Silva MV, Rodrigues V, Bruschi Thedei GCM, Oliveira CJF, Thedei G. Light-Emitting Diode at 460 ± 20 nm Increases the Production of IL-12 and IL-6 in Murine Dendritic Cells. Photomed Laser Surg 2017. [DOI: 10.1089/pho.2016.4244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Maria Tays Mendes
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | - Geraldo Thedei
- Laboratory of Molecular Biology, University of Uberaba, Uberaba, Brazil
| |
Collapse
|
20
|
Cutaneous vaccination: Briefings of the third skin vaccination summit, September 2–4, 2015, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. Vaccine 2017; 35:1780-1781. [DOI: 10.1016/j.vaccine.2017.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Mendes MT, Carvalho-Costa TM, da Silva MV, Anhê ACBM, Guimarães RM, da Costa TA, Ramirez LE, Rodrigues V, Oliveira CJF. Effect of the saliva from different triatomine species on the biology and immunity of TLR-4 ligand and Trypanosoma cruzi-stimulated dendritic cells. Parasit Vectors 2016; 9:634. [PMID: 27938380 PMCID: PMC5148907 DOI: 10.1186/s13071-016-1890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Triatomines are blood-sucking vectors of Trypanosoma cruzi, the causative agent of Chagas disease. During feeding, triatomines surpass the skin host response through biomolecules present in their saliva. Dendritic cells (DCs) play a crucial role in the induction of the protection to aggressive agents, including blood-sucking arthropods. Here, we evaluated if salivary components of triatomines from different genera evade the host immunity by modulating the biology and the function of LPS- or T. cruzi-stimulated DCs. Methods Saliva of Panstrongylus lignarius, Meccus pallidipennis, Triatoma lecticularia and Rhodnius prolixus were obtained by dissection of salivary glands and the DCs were obtained from the differentiation of mouse bone marrow precursors. Results The differentiation of DCs was inhibited by saliva of all species tested. Saliva differentially inhibited the expression of MHC-II, CD40, CD80 and CD86 in LPS-matured DCs. Except for the saliva of R. prolixus, which induced IL-6 cytokine production, TNF-α, IL-12 and IL-6 were inhibited by the saliva of the other three tested species and IL-10 was increased in all of them. Saliva per se, also induced the production of IL-12, IL-6 and IL-10. Only the saliva of R. prolixus induced DCs apoptosis. The presence of PGE2 was not detected in the saliva of the four triatomines studied. Finally, T. cruzi invasion on DCs is enhanced by the presence of the triatomine saliva. Conclusions These results demonstrate that saliva from different triatomine species exhibit immunomodulatory effects on LPS and T. cruzi-stimulated DCs. These effects could be related to hematophagy and transmission of T. cruzi during feeding. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1890-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Tays Mendes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.,Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Marcos Vinicius da Silva
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | | | - Rafaela Mano Guimarães
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thiago Alvares da Costa
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luis Eduardo Ramirez
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
22
|
Mancini RJ, Stutts L, Ryu KA, Tom JK, Esser-Kahn AP. Directing the immune system with chemical compounds. ACS Chem Biol 2014; 9:1075-85. [PMID: 24690004 PMCID: PMC5674983 DOI: 10.1021/cb500079s] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of immune cell receptors direct innate and adaptive immunity. These agonists range in size and complexity from small molecules to large macromolecules. Here, agonists of a class of immune cell receptors known as the Toll-like receptors (TLRs) are highlighted focusing on the distinctive molecular moieties that pertain to receptor binding and activation. How the structure and combined chemical signals translate into a variety of immune responses remain major questions in the field. In this structure-focused review, we outline potential areas where the tools of chemical biology could help decipher the emerging molecular codes that direct immune stimulation.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California Irvine , 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | | | | | | | | |
Collapse
|
23
|
The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res 2014; 2014:857143. [PMID: 24877157 PMCID: PMC4022068 DOI: 10.1155/2014/857143] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023] Open
Abstract
In this review, we explore the role of dendritic cell subsets in the development of tissue-specific autoimmune diseases. From the increasing list of dendritic cell subclasses, it is becoming clear that we are only at the beginning of understanding the role of these antigen presenting cells in mediating autoimmunity. Emerging research areas for the study of dendritic cell involvement in the onset and inhibition of tissue-specific autoimmunity are presented. Further, we compare tissue specific to systemic autoimmunity to demonstrate how development of dendritic cell-based therapies may be broadly applicable to both classes of autoimmunity. Continued development of these research areas will lead us closer to clinical assessment of novel immunosuppressive therapy for the reversal and prevention of tissue-specific autoimmunity. Through description of dendritic cell functions in the modulation of tissue-specific autoimmunity, we hope to stimulate a greater appreciation and understanding of the role dendritic cells play in the development and treatment of autoimmunity.
Collapse
|
24
|
Bollheimer LC, Volkert D, Bertsch T, Bauer J, Klucken J, Sieber CC, Büttner R. [Translational research in geriatrics? A plea based on current biomedical key publications]. Z Gerontol Geriatr 2012; 46:569-75. [PMID: 23242336 DOI: 10.1007/s00391-012-0414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Contemporary geriatric research focuses mainly on observational clinical studies and epidemiological surveys and the translation of basic scientific results from biogerontology into a clinical context is often neglected. Following a definition of translational research the article gives an overview of recent key publications in experimental biogerontology with a special emphasis on their relevance for clinical geriatrics. The topics dealt with include age-induced loss of skeletal muscle (sarcopenia), the aging immune system (immunosenescence) and neurodegenerative disorders (Alzheimer's and Parkinson's disease).
Collapse
Affiliation(s)
- L C Bollheimer
- Institut für Biomedizin des Alterns, Friedrich-Alexander-Universität Erlangen-Nürnberg, Heimerichstr. 58, 90419, Nürnberg, Deutschland.
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Yonggang T, Yiming M, Heying Z, Cheng S, Qiushi W, Xianghong Y, Wei Z, Huawei Z, Shan F. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR). Hum Vaccin Immunother 2012; 8:1416-24. [PMID: 23095866 PMCID: PMC3660284 DOI: 10.4161/hv.21526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022] Open
Abstract
The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.
Collapse
Affiliation(s)
- Tan Yonggang
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Meng Yiming
- Department of Immunology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
| | - Zhang Heying
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Sun Cheng
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Wang Qiushi
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Yang Xianghong
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Zheng Wei
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Zhou Huawei
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Fengping Shan
- Department of Immunology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
- Institute of pathology and pathophysiology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
| |
Collapse
|