1
|
He X, Cui Y, Li T, Luo L, Zeng Z, Ma Y, Chen Y. PU.1 alleviates the inhibitory effects of cigarette smoke on endothelial progenitor cell function and lung-homing through Wnt/β-catenin and CXCL12/CXCR4 pathways. Tob Induc Dis 2024; 22:TID-22-27. [PMID: 38274000 PMCID: PMC10809061 DOI: 10.18332/tid/174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/18/2023] [Accepted: 10/30/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lung-homing, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. METHODS C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, β-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. RESULTS CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of β-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. CONCLUSIONS PU.1 alleviates the inhibitory effects of CSE on EPC function and lung-homing via activating the canonical Wnt/β-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.
Collapse
Affiliation(s)
- Xue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
2
|
Xie H, Huo Y, Chen Q, Hou X. Application of B-Type Natriuretic Peptide in Neonatal Diseases. Front Pediatr 2021; 9:767173. [PMID: 34950618 PMCID: PMC8689063 DOI: 10.3389/fped.2021.767173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous congenital or secondary diseases, including, heart disease, respiratory disease, sepsis and many others, can lead to neonatal death. B-type natriuretic peptide (BNP) is a peptide hormone secreted by ventricular cells following an increase in ventricular wall tension. BNP functions to promote vasodilation, diuresis, and sodium release to regulate blood pressure. BNP is a sensitive index reflecting ventricular function, which may aid the diagnosis and monitoring of various neonatal diseases. In neonates, there is currently no consensus on a reference BNP level, as the plasma BNP concentration of healthy newborns varies with age, peaks in the first week after birth, and then gradually decreased to a stable level. In disease states, the correlation between the plasma BNP concentration and the results of echocardiography is good, which is of great significance in the screening, monitoring, and prognosis evaluation of neonatal cardiovascular diseases, including congenital heart disease, patent ductus arteriosus, etcetera. It also facilitates the judgment of the efficacy of treatment and perioperative management. Moreover, the monitoring of plasma BNP concentration provides guidance for the diagnosis, evaluation, and treatment selection of certain neonatal respiratory diseases and neonatal sepsis. This review summarizes the normal BNP values and discusses the application value of BNP in relation to physiological and pathological aspects in neonates.
Collapse
Affiliation(s)
| | | | | | - Xinlin Hou
- Department of Neonatal Ward, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Chang ACM, Doherty J, Huschtscha LI, Redvers R, Restall C, Reddel RR, Anderson RL. STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin Exp Metastasis 2014; 32:15-27. [PMID: 25391215 DOI: 10.1007/s10585-014-9687-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/23/2014] [Indexed: 12/26/2022]
Abstract
Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.
Collapse
Affiliation(s)
- Andy C-M Chang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
Liu YH, Ma SD, Fu QJ, Zhao LY, Li Y, Wang HQ, Li MC. Effect of lentinan on membrane-bound protein expression in splenic lymphocytes under chronic low-dose radiation. Int Immunopharmacol 2014; 22:505-14. [PMID: 25102307 DOI: 10.1016/j.intimp.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
Abstract
We investigated the protective effects of lentinan against damages to chronic and low-dose radiation (CL-radiation) by using mouse models. The mice were randomized divided into four groups: normal control mice (Ctr), mice exposed to radiation (Rad), irradiated mice treated with low-dose lentinan (0.1mg/(kg.d), RL), and irradiated mice treated with high-dose lentinan (0.5mg/(kg.d), RH). All the mice were injected intraperitoneally once a day at a dose of 0.5mL (Ctr and Rad with normal sodium while RL and RH with lentinan). The success of radiation models was confirmed by HE stain and cell morphology by a transmission electron microscope (TEM). On the basis of radiation models, we investigated the expression of proteins on the membrane of splenic cells through MALDI-TOF-MS/MS. The results demonstrated that both RT-radiation and lentinan affected the expression of membrane proteins, but lentinan protected the splenic cells and tissue from the injuries caused by CL-radiation. Therefore, we speculated that CL-radiation mainly damages the genetic materials and membrane-bound proteins, while lentinan protects membrane-bound proteins by regulating signal transduction and the appearance of the cells.
Collapse
Affiliation(s)
- Ying-Hua Liu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Shou-Dong Ma
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Qing-Jie Fu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Li-Yan Zhao
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Yi Li
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Hai-Qing Wang
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Ming-Chun Li
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China.
| |
Collapse
|
5
|
Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation. Toxicol Appl Pharmacol 2014; 277:172-82. [PMID: 24709672 DOI: 10.1016/j.taap.2014.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 12/14/2022]
Abstract
The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.
Collapse
|