1
|
Honda R, Tempaku Y, Sulidan K, Palmer HEF, Mashima K. Phosphorylation/dephosphorylation of PTP-PEST at Serine 39 is crucial for cell migration. J Biochem 2023; 173:73-84. [PMID: 36250939 DOI: 10.1093/jb/mvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
We investigated the molecular details of the role of protein tyrosine phosphatase (PTP)-PEST in cell migration. PTP-PEST knockout mouse embryonic fibroblasts (KO MEFs) and MEF cells expressing a dominant-negative mutant of PTP-PEST showed significant suppression of cell migration compared to MEF cells expressing wild-type PTP-PEST (WT MEFs). Moreover, MEF cells harbouring a constitutively active mutant of PTP-PEST (S39A MEFs) showed a marked decrease in cell migration. In addition, MEF cells with no PTP-PEST or little PTP activity rapidly adhered to fibronectin and made many focal adhesions compared to WT MEF cells. In contrast, S39A MEF cells showed weak adhesion to fibronectin and formed a few focal adhesions. Furthermore, investigating the subcellular localization showed that Ser39-phosphorylated PTP-PEST was favourably situated in the adherent area of the pseudopodia. Therefore, we propose that suppression of PTP-PEST enzyme activity due to Ser39-phosphorylation in pseudopodia and at the leading edge of migrating cells induces rapid and good adherence to the extracellular matrix. Thus, suppression of PTP activity by Ser39-phosphorylation is critical for cell migration. Three amino acid substitutions in human PTP-PEST have been previously reported to alter PTP activity. These amino acid substitutions in mouse PTP-PEST altered the migration of MEF cells in a positive correlation.
Collapse
Affiliation(s)
- Reika Honda
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Yasuko Tempaku
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Kaidiliayi Sulidan
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Helen E F Palmer
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Keisuke Mashima
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan.,Life Science Research Center, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| |
Collapse
|
2
|
Klapproth S, Bromberger T, Türk C, Krüger M, Moser M. A kindlin-3-leupaxin-paxillin signaling pathway regulates podosome stability. J Cell Biol 2019; 218:3436-3454. [PMID: 31537712 PMCID: PMC6781449 DOI: 10.1083/jcb.201903109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kindlin-3 regulates podosome stability by recruiting leupaxin to podosomes, which in turn controls PTP-PEST activity and paxillin phosphorylation. Kindlin-3 deficiency allows formation of initial adhesion patches containing talin, vinculin, and paxillin, whereas paxillin family proteins are dispensable for podosome formation. Binding of kindlins to integrins is required for integrin activation, stable ligand binding, and subsequent intracellular signaling. How hematopoietic kindlin-3 contributes to the assembly and stability of the adhesion complex is not known. Here we report that kindlin-3 recruits leupaxin into podosomes and thereby regulates paxillin phosphorylation and podosome turnover. We demonstrate that the activity of the protein tyrosine phosphatase PTP-PEST, which controls paxillin phosphorylation, requires leupaxin. In contrast, despite sharing the same binding mode with leupaxin, paxillin recruitment into podosomes is kindlin-3 independent. Instead, we found paxillin together with talin and vinculin in initial adhesion patches of kindlin-3–null cells. Surprisingly, despite its presence in these early adhesion patches, podosomes can form in the absence of paxillin or any paxillin member. In conclusion, our findings show that kindlin-3 not only activates and clusters integrins into podosomes but also regulates their lifetime by recruiting leupaxin, which controls PTP-PEST activity and thereby paxillin phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Sarah Klapproth
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Bromberger
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
3
|
Sacchetti C, Bottini N. Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets. Curr Rheumatol Rep 2017; 19:28. [PMID: 28397126 DOI: 10.1007/s11926-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The pathogenesis of systemic sclerosis depends on a complex interplay between autoimmunity, vasculopathy, and fibrosis. Reversible phosphorylation on tyrosine residues, in response to growth factors and other stimuli, critically regulates each one of these three key pathogenic processes. Protein tyrosine kinases, the enzymes that catalyze addition of phosphate to tyrosine residues, are known players in systemic sclerosis, and tyrosine kinase inhibitors are undergoing clinical trials for treatment of this disease. Until recently, the role of tyrosine phosphatases-the enzymes that counteract the action of tyrosine kinases by removing phosphate from tyrosine residues-in systemic sclerosis has remained largely unknown. Here, we review the function of tyrosine phosphatases in pathways relevant to the pathogenesis of systemic sclerosis and their potential promise as therapeutic targets to halt progression of this debilitating rheumatic disease. RECENT FINDINGS Protein tyrosine phosphatases are emerging as important regulators of a multitude of signaling pathways and undergoing validation as molecular targets for cancer and other common diseases. Recent advances in drug discovery are paving the ways to develop new classes of tyrosine phosphatase modulators to treat human diseases. Although so far only few reports have focused on tyrosine phosphatases in systemic sclerosis, these enzymes play a role in multiple pathways relevant to disease pathogenesis. Further studies in this field are warranted to explore the potential of tyrosine phosphatases as drug targets for systemic sclerosis.
Collapse
Affiliation(s)
- Cristiano Sacchetti
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Sui Y, Fu X, Wang Y, Hu W, Zhang T, Liu W, Jiang L, Xing S, Fu X, Xu X. Expression, purification and characterization of a catalytic domain of human protein tyrosine phosphatase non-receptor 12 (PTPN12) in Escherichia coli with FKBP-type PPIase as a chaperon. Protein Expr Purif 2017; 142:45-52. [PMID: 28965803 DOI: 10.1016/j.pep.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 12 (PTPN12), also known as PTP-PEST, was broadly expressed in hemopoietic cells. Recent research has shown that this enzyme is involved in tumorigenesis, as well as in tumor progression and transfer, as it can suppress multiple oncogenic tyrosine kinases. However, the difficulty of soluble expression of PTP-PEST in prokaryotic cells has resulted in great limitations in investigating its structure and functions. In this study, we successfully carried out soluble expression of the catalytic domain of PTP-PEST (ΔPTP-PEST) in Escherichia coli and performed an enzymatic characterization and kinetics. To confirm expression efficiency, we also induced the expression of the chaperon, FKBP_C. FKBP_C expression indicated efficacious prokaryotic expression of ΔPTP-PEST. In conclusion, our work yielded a practical expression system and two-step chromatography purification method that may serve as a valuable tool for the structural and functional analysis of proteins that are difficult to express in the soluble form in prokaryotic cells.
Collapse
Affiliation(s)
- Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xingye Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yuchen Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiyan Hu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Tong Zhang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Wanyao Liu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Liyan Jiang
- Core Facilities for Life Science, Jilin University, Changchun 130012, PR China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun 130033, PR China.
| |
Collapse
|
5
|
Yang T, Xie Z, Li H, Yue L, Pang Z, MacNeil AJ, Tremblay ML, Tang JT, Lin TJ. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo. Cell Immunol 2016; 306-307:9-16. [PMID: 27311921 DOI: 10.1016/j.cellimm.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo.
Collapse
Affiliation(s)
- Ting Yang
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Zhongping Xie
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Hua Li
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Zheng Pang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Adam J MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Michel L Tremblay
- Goodman Cancer Research Centre and the Department of Biochemistry, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada
| | - Jin-Tian Tang
- Institute of Medical Physics and Engineering, Tsinghua University, Beijing 100084, China
| | - Tong-Jun Lin
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia B3K 6R8, Canada.
| |
Collapse
|