1
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
2
|
McPherson SW, Heuss ND, Abedin M, Roehrich H, Pierson MJ, Gregerson DS. Parabiosis reveals the correlation between the recruitment of circulating antigen presenting cells to the retina and the induction of spontaneous autoimmune uveoretinitis. J Neuroinflammation 2022; 19:295. [PMID: 36494807 PMCID: PMC9733026 DOI: 10.1186/s12974-022-02660-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Characterizing immune cells and conditions that govern their recruitment and function in autoimmune diseases of the nervous system or in neurodegenerative processes is an area of active investigation. We sought to analyze the origin of antigen presenting cells associated with the induction of retinal autoimmunity using a system that relies on spontaneous autoimmunity, thus avoiding uncertainties associated with immunization with adjuvants at remotes sites or adoptive transfer of in vitro activated T cells. METHODS R161H mice (B10.RIII background), which spontaneously and rapidly develop severe spontaneous autoimmune uveoretinitis (SAU), were crossed to CD11cDTR/GFP mice (B6/J) allowing us to track the recruitment to and/or expansion within the retina of activated, antigen presenting cells (GFPhi cells) in R161H+/- × CD11cDTR/GFP F1 mice relative to the course of SAU. Parabiosis between R161H+/- × CD11cDTR/GFP F1 mice and B10.RIII × B6/J F1 (wild-type recipient) mice was done to explore the origin and phenotype of antigen presenting cells crucial for the induction of autoimmunity. Analysis was done by retinal imaging, flow cytometry, and histology. RESULTS Onset of SAU in R161H+/- × CD11cDTR/GFP F1 mice was delayed relative to B10.RIII-R161H+/- mice revealing a disease prophase prior to frank autoimmunity that was characterized by expansion of GFPhi cells within the retina prior to any clinical or histological evidence of autoimmunity. Parabiosis between mice carrying the R161H and CD11cDTR/GFP transgenes and transgene negative recipients showed that recruitment of circulating GFPhi cells into retinas was highly correlative with the occurrence of SAU. CONCLUSIONS Our results here contrast with our previous findings showing that retinal antigen presenting cells expanding in response to either sterile mechanical injury or neurodegeneration were derived from myeloid cells within the retina or optic nerve, thus highlighting a unique facet of retinal autoimmunity.
Collapse
Affiliation(s)
- Scott W. McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Mark J. Pierson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| |
Collapse
|
3
|
High K + intake alleviates experimental autoimmune encephalomyelitis (EAE) and increases T regulatory cells. Cell Immunol 2022; 382:104637. [PMID: 36343517 DOI: 10.1016/j.cellimm.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis is believed to be triggered by the interplay between the environmental and genetic factors. In contrast to the Paleolithic diet, the modern Western diet is high in Na+ and low in K+. The present study was undertaken to determine whether high K+ intake alleviated experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Treatment of C57BL/6 or SJL mice for 7 days with a 5 % K+ diet prior to induction of EAE and maintaining mice on the diet until the end of experiments delayed the onset, reduced the peak, and accelerated the recovery of EAE in both strains compared with mice on a control diet (0.7 % K+), whereas feeding C57BL/6 mice with a 0.1 % K+ diet did the opposite. High K+ intake increased the splenic Treg cell frequency in the pretreatment and peak EAE. Thus, high K+ intake attenuates EAE, possibly by increasing the Treg cells.
Collapse
|
4
|
Li C, Wang X, Chen T, Li W, Yang Q. A Novel lncRNA Panel for Risk Stratification and Immune Landscape in Breast Cancer Patients. Int J Gen Med 2022; 15:5253-5272. [PMID: 35655656 PMCID: PMC9154001 DOI: 10.2147/ijgm.s366335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose In recent years, breast cancer (BC) has been a primary cause of mortality in women. However, the underlying mechanisms remain to be elucidated. Accumulating evidence has supported the hypothesis that long noncoding RNAs (lncRNAs) play central roles in the progression of cancer. We aimed to construct an immune-related lncRNA panel to predict the prognosis of patients with BC and evaluate the immune features. Methods The expression profiles of patients with BC were obtained from The Cancer Genome Atlas (TCGA) database to screen the differentially expressed lncRNAs (DELs). Pearson’s correlation analysis was employed to filter the DELs related to the immune-associated genes. Univariate Cox regression, the LASSO algorithm, and multivariate Cox regression analyses were conducted to establish the model. Functional enrichment analyses and biological experiments were performed to explore the immune activity of the lncRNA panel. Results A four-immune-related lncRNA panel (IRLP) composed of AC022196.1, ARHGAP26-AS1, DPYD-AS1 and PURPL was established in TCGA training cohort. The prognostic accuracy of the predictive model was confirmed in TCGA internal validation cohort, TCGA entire cohort and Qilu external validation cohort. Bioinformatics analyses indicated that the IRLP had a close relationship with tumour infiltrating immune cells and immunomodulatory biomarkers. The biological functions of the four immune-related lncRNAs in BC were first investigated in vitro and in vivo. PURPL was indicated to play a central role in the regulation of macrophage recruitment and polarization via CCL2. Conclusion Our study identified IRLP as a reliable prognostic indicator with great potential for clinical application in personalized immunotherapy.
Collapse
Affiliation(s)
- Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Qifeng Yang, Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Email
| |
Collapse
|
5
|
Packialakshmi B, Hira S, Lund K, Zhang AH, Halterman J, Feng Y, Scott DW, Lees JR, Zhou X. NFAT5 contributes to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and decrease of T regulatory cells in female mice. Cell Immunol 2022; 375:104515. [DOI: 10.1016/j.cellimm.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
6
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Lees JR. CD8+ T cells: The past and future of immune regulation. Cell Immunol 2020; 357:104212. [PMID: 32979764 DOI: 10.1016/j.cellimm.2020.104212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
Regulation of the adaptive immune response is critical for health. Regulatory activity can be found in multiple components of the immune system, however, the focus on particular components of the immune regulatory network has left many aspects of this critical immune component understudied. Here we review the evidence for activities of CD8+ T cells in immune homeostasis and regulation of autoimmune reactivity. The heterogeneous nature of identified CD8+ cell types are examined, and common phenotypes associated with functional activities are defined. The varying types of antigen signal crucial for CD8+ T cell regulatory activity are identified and the implications of these activation pathways for control of adaptive responses is considered. Finally, the promising capacity for transgenic antigen receptor directed cytotoxicity as a mechanism for modulation of autoimmunity is detailed.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
8
|
Zhao S, Zhang Y, Huang G, Luo W, Li Y, Xiao Y, Zhou M, Li Y, Lai J, Li Y, Li B. Increased CD8 +CD27 +perforin + T cells and decreased CD8 +CD70 + T cells may be immune biomarkers for aplastic anemia severity. Blood Cells Mol Dis 2019; 77:34-42. [PMID: 30953940 DOI: 10.1016/j.bcmd.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Aplastic anemia (AA) is T cell immune-mediated autoimmune disease. Aberrant T cell activation involves an imbalance in T cell homeostasis in AA. However, whether the T cell activation molecule CD27 and its ligand CD70 participate in the immune pathogenesis of AA remains ill defined. METHODS The frequencies of CD27/CD70 and perforin/granzyme B in different T cell subsets were detected in AA patients and healthy individuals by flow cytometry. RESULTS We first time demonstrate a significantly elevated proportion of CD27+ and significantly decreased CD70+ T cells from AA. Changed frequency of CD27+ and CD70+ in different T cell subsets appeared to be associated with AA severity. In very severe aplastic anemia (VSAA) and severe aplastic anemia (SAA), increased CD8+CD27+ T cells present with a cytotoxic effector phenotype by elevating perforin proportion. CONCLUSIONS Elevated proportion of CD27 in T cells may contribute to distinct immune pathogenesis for different severities of AA. The CD8+CD27+perforin+ T cells combined with CD8+CD70+ T cells may serve as an immune biomarker for AA severity estimation.
Collapse
Affiliation(s)
- Suwen Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Guixuan Huang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | | | - Yan Li
- Department of Cardiology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yankai Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Yumiao Li
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Bo Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|