1
|
Vu SH, Pham HH, Pham TTP, Le TT, Vo MC, Jung SH, Lee JJ, Nguyen XH. Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Front Oncol 2023; 13:1275076. [PMID: 38023191 PMCID: PMC10656693 DOI: 10.3389/fonc.2023.1275076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients.
Collapse
Affiliation(s)
- Son Hai Vu
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ha Hong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thao Thi Phuong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Thien Le
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
2
|
Kang Y, Sundaramoorthy P, Gasparetto C, Feinberg D, Fan S, Long G, Sellars E, Garrett A, Tuchman SA, Reeves BN, Li Z, Liu B, Ogretmen B, Maines L, Ben-Yair VK, Smith C, Plasse T. Phase I study of opaganib, an oral sphingosine kinase 2-specific inhibitor, in relapsed and/or refractory multiple myeloma. Ann Hematol 2023; 102:369-383. [PMID: 36460794 DOI: 10.1007/s00277-022-05056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.
Collapse
Affiliation(s)
- Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Sellars
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Anderson Garrett
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sascha A Tuchman
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi N Reeves
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lynn Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | - Charles Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | |
Collapse
|
3
|
Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide's anti-myeloma activity in vitro and in vivo. Cancer Lett 2022; 545:215832. [PMID: 35872263 PMCID: PMC10355274 DOI: 10.1016/j.canlet.2022.215832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
Many patients with multiple myeloma (MM) have comorbidities and are treated with PPAR agonists. Immunomodulatory agents (IMiDs) are the cornerstones for MM therapy. Currently, little is known about how co-administration of PPAR agonists impacts lenalidomide treatment in patients with MM. Here, we determined the effects of PPAR agonists on anti-myeloma activities of lenalidomide in vitro and in a myeloma xenograft mouse model. Genetic overexpression and CRISPR/cas9 knockout experiments were performed to determine the role of CRBN in the PPAR-mediated pathway. A retrospective cohort study was performed to determine the correlation of PPAR expression with the outcomes of patients with MM. PPAR agonists down-regulated CRBN expression and reduced the anti-myeloma efficacy of lenalidomide in vitro and in vivo. Co-treatment with PPAR antagonists increased CRBN expression and improved sensitivity to lenalidomide. PPAR expression was higher in bone marrow cells of patients with newly diagnosed MM than in normal control bone marrow samples. High PPAR expression was correlated with poor clinical outcomes. Our study provides the first evidence that PPARs transcriptionally regulate CRBN and that drug-drug interactions between PPAR agonists and IMiDs may impact myeloma treatment outcomes.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiguo Li
- Duke Cancer Institute Bioinformatics Shared Resources, Duke University Medical Center, Durham, NC, USA
| | - John Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Rendo MJ, Joseph JJ, Phan LM, DeStefano CB. CAR T-Cell Therapy for Patients with Multiple Myeloma: Current Evidence and Challenges. Blood Lymphat Cancer 2022; 12:119-136. [PMID: 36060553 PMCID: PMC9439649 DOI: 10.2147/blctt.s327016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
The therapeutic landscape of multiple myeloma (MM) has benefited from an emergence of novel therapies over the last decade. By inducing T-cell kill of target cancer cells, chimeric antigen receptor (CAR) T-cell therapies have improved outcomes of patients with hematologic malignancies. B-cell maturation antigen (BCMA) is the current target antigen of choice for most CAR T-cell products under investigation for MM. However, their shortcomings deal with logistical and clinical challenges, including limited availability, manufacturing times, and toxicities. This article provides an overview of recently developed and investigational CAR T-cell therapies for MM, highlighting current evidence and challenges.
Collapse
Affiliation(s)
- Matthew J Rendo
- Department of Hematology/Oncology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Jacinth J Joseph
- Blood and Marrow Transplant Center, Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Liem Minh Phan
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, CA, USA
| | - Christin B DeStefano
- Department of Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
5
|
Choi T, Kang Y. Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma. Pharmacol Ther 2022; 232:108007. [PMID: 34582835 PMCID: PMC8930424 DOI: 10.1016/j.pharmthera.2021.108007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Although treatment outcomes of multiple myeloma patients have improved significantly during the last two decades, myeloma is still an incurable disease. There are newly emerging immunotherapies to treat multiple myeloma including monoclonal antibodies, antibody-drug conjugate, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy. Impressive response rate and clinical efficacy in heavily pretreated myeloma patients led to the FDA approval of the first myeloma CAR-T therapy in March 2021. Among many different targets for myeloma CAR-T therapies, B Cell Maturation Antigen (BCMA) has been the most successful target so far, but other targets which can be used either for single-target or dual-target CAR-T's are actively being explored. Clinical efficacy and safety of current myeloma CAR-T therapies will be presented here. Potential mechanisms leading to resistance include clearance of CAR-T cells, antigenic escape, and immunosuppressive tumor microenvironment. Novel strategies to enhance myeloma CAR-T will also be described. In this article, we provide a comprehensive review of the current data and the future directions of myeloma CAR-T therapies.
Collapse
Affiliation(s)
- Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
6
|
Zhang L, Shen X, Yu W, Li J, Zhang J, Zhang R, Li J, Chen L. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann Med 2021; 53:1547-1559. [PMID: 34459681 PMCID: PMC8409966 DOI: 10.1080/07853890.2021.1970218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy shows impressive results in clinical trials. We conducted a meta-analysis based on the most recent data to systematically describe the efficacy and safety of anti-BCMA CAR T therapy for patients with relapsed or refractory multiple myeloma (R/R MM). METHODS PubMed, Embase, Web of Science, Cochrane library, ClinicalTrials.gov, China Biology Medicine disc (CBM disc) and Wanfang Data were searched on 8 November 2020. Registration number of PROSPERO was CRD42020219127. RESULTS From 763 articles, we identified 22 appropriate studies with 681 patients. The pooled overall response rate (ORR) was 85.2% (95%CI 0.797-0.910), complete response rate (CRR) was 47.0% (95%CI 0.378-0.583), and minimal residual disease (MRD) negativity rate was 97.8% (95%CI 0.935-1.022). The pooled incidence of grade 3-4 cytokine release syndrome was 6.6% (95%CI 0.036-0.096) and neurotoxicity was 2.2% (95%CI 0.006-0.038). The median progression-free survival (PFS) was 14.0 months and median overall survival (OS) was 24.0 months. Subgroup analysis showed dual epitope-binding CAR T cells achieved the best therapy outcomes and humanized CAR T cells had the best safety profile. Patients who were older, heavily pre-treated or received lower dose of CAR T cells had worse ORR. There was no significant difference in ORR, CRR and PFS between patients with and without high-risk cytogenetic features. The PFS and CRR of non-extramedullary disease (EMD) group was superior to those of EMD group. CONCLUSION Anti-BCMA CAR T therapy is effective and safe for patients with R/R MM. It can improve the prognosis of patients with high-risk cytogenetic features while the prognosis of patients with EMD remains poor. Moreover, patients are likely to benefit from an earlier use of CAR T therapy and human-derived CAR T cells have obvious advantages based on the existing data.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Wenjun Yu
- Department of Geriatric Medicine, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Institute, Nanjing, China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jue Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Run Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| |
Collapse
|
7
|
Li X, Feng Y, Shang F, Yu Z, Wang T, Zhang J, Song Z, Wang P, Shi B, Wang J. Characterization of the Therapeutic Effects of Novel Chimeric Antigen Receptor T Cells Targeting CD38 on Multiple Myeloma. Front Oncol 2021; 11:703087. [PMID: 34513682 PMCID: PMC8427526 DOI: 10.3389/fonc.2021.703087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a tumor type characterized by the unregulated proliferation of clonal plasma cells in the bone marrow. Immunotherapy based on chimeric antigen receptor T cell (CAR-T) therapy has achieved exciting success in the treatment of hematological malignant tumors. CD38 is highly and evenly expressed in MM and is an attractive target for MM treatment. Here, we successfully constructed two novel second-generation CAR-T cells targeting CD38 by retroviral vector transduction. CD38 CAR-T cells could be activated effectively after stimulation with CD38-positive tumor cells and secrete cytokines such as IFN-γ and TNF-α to promote tumor cell apoptosis in in vitro experiments. Real-time fluorescence monitoring experiments, luciferase detection experiments and flow cytometry experiments revealed the efficient and specific killing abilities of CD38 CAR-T cells against CD38-positive tumor cells. The proliferation ability of CD38 CAR-T cells in vitro was higher than that of untransduced T cells. Further antitumor experiments in vivo showed that CD38 CAR-T cells could be quickly activated to secrete IFN-γ and eliminate tumors. Thus, novel CD38-targeted second-generation CAR-T cells have efficient and specific antitumor activity and may become a novel therapy for the clinical treatment of MM.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yaru Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fengqin Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiru Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Liu F, Wang YL, Wei JM, Huang ZD. Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 2021; 169:327-336. [PMID: 32970816 DOI: 10.1093/jb/mvaa106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie-Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.
Collapse
Affiliation(s)
| | | | | | - Zhao-Dong Huang
- Department of Intervention, Linyi Central Hospital, No. 17, Health Road, Yishui County, Linyi City, 276400 Shandong Province, China
| |
Collapse
|
9
|
Padda J, Khalid K, Zubair U, Peethala MM, Kakani V, Goriparthi L, Almanie AH, Cooper AC, Jean-Charles G. Chimeric Antigen Receptor T Cell Therapy and Its Significance in Multiple Myeloma. Cureus 2021; 13:e15917. [PMID: 34322356 PMCID: PMC8310625 DOI: 10.7759/cureus.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) has a five-year prevalence worldwide of 230,000 people and is known as the second most common hematological malignancy within the United States. Extensive research has been conducted to gain a wide range of treatment strategies, providing hope to these patients. Combination therapy using chemotherapy, monoclonal antibodies, and immunomodulatory drugs are the current management of choice. After the introduction of chimeric antigen receptor (CAR) T cell therapy, promising results have been evidenced. In this therapy, T cells are derived from the patient and modified in-vitro to induce receptors that later target specific antigens when they are injected into patients. CAR T cells use three mechanisms to kill tumor cells: cytolytic pathways, cytokine release, and Fas/FasL axis. In this review, we highlight the different tumor markers targeted for therapy against multiple myeloma (MM). Target antigens for CAR T cell therapy include B-cell maturation antigen (BCMA), signaling lymphocyte activation molecule F7 (SLAMF7), CD38, CD138, CD19, immunoglobulin kappa light chain, orphan G protein-coupled receptor class C group 5 member D (GPRC5D). With the benefit of improving survival and prognosis, this therapy does carry a risk of some adverse events such as cytokine release syndrome, encephalopathy, infections, hypogammaglobulinemia, and tumor lysis syndrome.
Collapse
Affiliation(s)
- Jaskamal Padda
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Avalon University School of Medicine, Willemstad, CUW
| | | | - Ujala Zubair
- Family Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Mounika M Peethala
- Internal Medicine, Rajeev Gandhi Institute of Medical Sciences, Kadapa, IND.,Internal Medicine, JC Medical Center, Orlando, USA
| | - Varsha Kakani
- Internal Medicine, Kakatiya Medical College, Warangal, IND
| | | | | | | | | |
Collapse
|
10
|
Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J 2021; 11:84. [PMID: 33927192 PMCID: PMC8085238 DOI: 10.1038/s41408-021-00469-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of various novel therapies over the last decade has changed the therapeutic landscape for multiple myeloma. While the clinical outcomes have improved significantly, the disease remains incurable, typically in patients with relapsed and refractory disease. Chimeric antigen receptor (CAR) T-cell therapies have achieved remarkable clinical success in B-cell malignancies. This scope of research has more recently been extended to the field of myeloma. While B-cell maturation antigen (BCMA) is currently the most well-studied CAR T antigen target in this disease, many other antigens are also undergoing intensive investigations. Some studies have shown encouraging results, whereas some others have demonstrated unfavorable results due to reasons such as toxicity and lack of clinical efficacy. Herein, we provide an overview of CAR T-cell therapies in myeloma, highlighted what has been achieved over the past decade, including the latest updates from ASH 2020 and discussed some of the challenges faced. Considering the current hits and misses of CAR T therapies, we provide a comprehensive analysis on the current manufacturing technologies, and deliberate on the future of CAR T-cell domain in MM.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
11
|
Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol Immunother 2021; 70:2737-2750. [PMID: 33830275 PMCID: PMC8423639 DOI: 10.1007/s00262-021-02897-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Despite the significant contributions of immunocompetent mouse models to the development and assessment of cancer immunotherapies, they inadequately represent the genetic and biological complexity of corresponding human cancers. Immunocompromised mice reconstituted with a human immune system (HIS) and engrafted with patient-derived tumor xenografts are a promising novel preclinical model for the study of human tumor-immune interactions. Whilst overcoming limitations of immunocompetent models, HIS-tumor models often rely on reconstitution with allogeneic immune cells, making it difficult to distinguish between anti-tumor and alloantigen responses. Models that comprise of autologous human tumor and human immune cells provide a platform that is more representative of the patient immune-tumor interaction. However, limited access to autologous tissues, short experimental windows, and poor retention of tumor microenvironment and tumor infiltrating lymphocyte components are major challenges affecting the establishment and application of autologous models. This review outlines existing preclinical murine models for the study of immuno-oncology, and highlights innovations that can be applied to improve the feasibility and efficacy of autologous models.
Collapse
|
12
|
Singh AP, Chen W, Zheng X, Mody H, Carpenter TJ, Zong A, Heald DL. Bench-to-bedside translation of chimeric antigen receptor (CAR) T cells using a multiscale systems pharmacokinetic-pharmacodynamic model: A case study with anti-BCMA CAR-T. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:362-376. [PMID: 33565700 PMCID: PMC8099446 DOI: 10.1002/psp4.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
Despite tremendous success of chimeric antigen receptor (CAR) T cell therapy in clinical oncology, the dose-exposure-response relationship of CAR-T cells in patients is poorly understood. Moreover, the key drug-specific and system-specific determinants leading to favorable clinical outcomes are also unknown. Here we have developed a multiscale mechanistic pharmacokinetic (PK)-pharmacodynamic (PD) model for anti-B-cell maturation antigen (BCMA) CAR-T cell therapy (bb2121) to characterize (i) in vitro target cell killing in multiple BCMA expressing tumor cell lines at varying effector to target cell ratios, (ii) preclinical in vivo tumor growth inhibition and blood CAR-T cell expansion in xenograft mice, and (iii) clinical PK and PD biomarkers in patients with multiple myeloma. Our translational PK-PD relationship was able to effectively describe the commonly observed multiphasic CAR-T cell PK profile in the clinic, consisting of the rapid distribution, expansion, contraction, and persistent phases, and accounted for the categorical individual responses in multiple myeloma to effectively calculate progression-free survival rates. Preclinical and clinical data analysis revealed comparable parameter estimates pertaining to CAR-T cell functionality and suggested that patient baseline tumor burden could be more sensitive than dose levels toward overall extent of exposure after CAR-T cell infusion. Virtual patient simulations also suggested a very steep dose-exposure-response relationship with CAR-T cell therapy and indicated the presence of a "threshold" dose, beyond which a flat dose-response curve could be observed. Our simulations were concordant with multiple clinical observations discussed in this article. Moving forward, this framework could be leveraged a priori to explore multiple infusions and support the preclinical/clinical development of future CAR-T cell therapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- B-Cell Maturation Antigen/antagonists & inhibitors
- Biomarkers, Pharmacological/analysis
- Cell Line, Tumor/drug effects
- Computer Simulation
- Dose-Response Relationship, Drug
- Humans
- Immunotherapy, Adoptive/methods
- Infusions, Intravenous
- Mice
- Mice, Inbred NOD
- Models, Theoretical
- Multiple Myeloma/therapy
- Pharmacokinetics
- Progression-Free Survival
- Receptors, Chimeric Antigen/administration & dosage
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Aman P. Singh
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Wenbo Chen
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Xirong Zheng
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Hardik Mody
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Thomas J. Carpenter
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Alice Zong
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Donald L. Heald
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| |
Collapse
|
13
|
Globerson Levin A, Rawet Slobodkin M, Waks T, Horn G, Ninio-Many L, Deshet Unger N, Ohayon Y, Suliman S, Cohen Y, Tartakovsky B, Naparstek E, Avivi I, Eshhar Z. Treatment of Multiple Myeloma Using Chimeric Antigen Receptor T Cells with Dual Specificity. Cancer Immunol Res 2020; 8:1485-1495. [PMID: 33008840 DOI: 10.1158/2326-6066.cir-20-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable successes in fighting B-cell leukemias/lymphomas. Promising response rates are reported in patients treated with B-cell maturation antigen (BCMA) CAR T cells for multiple myeloma. However, responses appear to be nondurable, highlighting the need to expand the repertoire of multiple myeloma-specific targets for immunotherapy and to generate new CAR T cells. Here, we developed a "dual-CAR" targeting two multiple myeloma-associated antigens and explored its safety and efficacy. To reduce the "off-target" toxicity, we used the recognition of paired antigens that were coexpressed by the tumor to induce efficient CAR T-cell activation. The dual-CAR construct presented here was carefully designed to target the multiple myeloma-associated antigens, taking into consideration the distribution of both antigens on normal human tissues. Our results showed that the CD138/CD38-targeted dual CAR (dCAR138-38) elicited a potent anti-multiple myeloma response both in vitro and in vivo NSG mice transplanted with a multiple myeloma cell line and treated with dCAR138-38 showed median survival of 97 days compared with 31 days in the control group treated with mock-lymphocytes. The dCAR138-38 showed increased specificity toward cells expressing both targeted antigens compared with single-antigen-expressing cells and low activity toward primary cells from healthy tissues. Our findings indicated that the dCAR138-38 may provide a potent and safe alternative therapy for patients with multiple myeloma.
Collapse
Affiliation(s)
- Anat Globerson Levin
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel. .,Weizmann Institute of Science, Rehovot, Israel
| | | | - Tova Waks
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Weizmann Institute of Science, Rehovot, Israel
| | - Galit Horn
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | | | | | - Yaara Ohayon
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | | | - Yael Cohen
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ella Naparstek
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Irit Avivi
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zelig Eshhar
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Weizmann Institute of Science, Rehovot, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020; 21:E5192. [PMID: 32707894 PMCID: PMC7432930 DOI: 10.3390/ijms21155192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, has approximately doubled the disease's five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug's effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
15
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
16
|
Simon F, Garcia Borrega J, Bröckelmann PJ. Toxicities of novel therapies for hematologic malignancies. Expert Rev Hematol 2020; 13:241-257. [DOI: 10.1080/17474086.2020.1728249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florian Simon
- Department I of Internal Medicine and Centre of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Jorge Garcia Borrega
- Department I of Internal Medicine and Centre of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Paul J. Bröckelmann
- Department I of Internal Medicine and Centre of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|