1
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
2
|
Zhang J, Ma X, Cao L, He X, Li S, Yang M, Yang C, Rong P, Yi S, Ghimire K, Kong X, Wang W. Enhancing and stabilization of cord blood regulatory T-cell suppressive function by human mesenchymal stem cell (MSC)-derived exosomes. Clin Exp Immunol 2022; 208:255-267. [PMID: 35439818 PMCID: PMC9226152 DOI: 10.1093/cei/uxac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
FOXP3+ regulatory T cells (Tregs) are central to maintaining peripheral tolerance and immune homeostasis. They have the potential to be developed as a cellular therapy to treat various clinical ailments such as autoimmune disorders, inflammatory diseases and to improve transplantation outcomes. However, a major question remains whether Tregs can persist and exert their function effectively in a disease state, where a broad spectrum of inflammatory mediators could inactivate Tregs. In this study, we investigated the potential of mesenchymal stem cell (MSC)-derived exosomes to promote and sustain Tregs function. MSC-conditioned media (MSC-CM) cultured Tregs were more suppressive in both polyclonal and allogeneic responses and were resistant to inflammatory stimulation in vitro compared with the controls. A similar enhancement of Treg function was also observed by culturing Tregs with MSC-derived exosomes alone. The enhanced suppressive activity and stability of Treg cultured in MSC-CM was reduced when exosomes were depleted from MSC-CM. We identified that MSC-derived exosomes could upregulate the expression of LC3(II/I), phosphorylate Jak3 and Stat5 to promote Treg survival, and regulate FOXP3 expression in Tregs. Overall, our study demonstrates that MSC-derived exosomes are capable of enhancing Hucb-Tregs function and stability by activating autophagy and Stat5 signalling pathways. Our findings provide a strong rationale for utilizing MSC-derived exosomes as an effective strategy to enhance Treg function, and improve the overall Tregs-based cell therapy landscape.
Collapse
Affiliation(s)
- Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Xing He
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Yang
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Shounan Yi
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R, Vietor I. An Overview of Autophagy in Hematopoietic Stem Cell Transplantation. Front Bioeng Biotechnol 2022; 10:849768. [PMID: 35677295 PMCID: PMC9168265 DOI: 10.3389/fbioe.2022.849768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a fundamental homeostatic process crucial for cellular adaptation in response to metabolic stress. Autophagy exerts its effect through degrading intracellular components and recycling them to produce macromolecular precursors and energy. This physiological process contributes to cellular development, maintenance of cellular/tissue homeostasis, immune system regulation, and human disease. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only preferred therapy for most bone marrow-derived cancers. Unfortunately, HSCT can result in several serious and sometimes untreatable conditions due to graft-versus-host disease (GVHD), graft failure, and infection. These are the major cause of morbidity and mortality in patients receiving the transplant. During the last decade, autophagy has gained a considerable understanding of its role in various diseases and cellular processes. In light of recent research, it has been confirmed that autophagy plays a crucial role in the survival and function of hematopoietic stem cells (HSCs), T-cell differentiation, antigen presentation, and responsiveness to cytokine stimulation. Despite the importance of these events to HSCT, the role of autophagy in HSCT as a whole remains relatively ambiguous. As a result of the growing use of autophagy-modulating agents in the clinic, it is imperative to understand how autophagy functions in allogeneic HSCT. The purpose of this literature review is to elucidate the established and implicated roles of autophagy in HSCT, identifying this pathway as a potential therapeutic target for improving transplant outcomes.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| |
Collapse
|
4
|
Ren RR, Ma LM, Xie YX, Tian WW, Wang T. Effect of donor lymphocyte infusion from two types of donors on Mixed Chimerism with Secondary Graft Failure after allogeneic haematopoietic stem cell transplantation. Transplant Cell Ther 2021; 28:152.e1-152.e7. [PMID: 34973501 DOI: 10.1016/j.jtct.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/21/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
Mixed chimerism (MC) and secondary graft failure (SGF) with recipient-or donor-type chimerism is a major obstacle in allogeneic hematopoietic stem cell transpl- antation (HSCT). Donor lymphocyte infusion(DLI) can eradicate minimal residual disease or be used to rescue a hematologic relapse, being able to induce durable remissions after HSCT.This study aimed to analyse the efficacy and immune mecha- nism of DLI from the original and alternative donor for patients of mixed donor chimerism with SGF . The alternative donor refers to the candidate relative donor who did not initially provide stem cells include HLA-matched sibling donor(MSD) or HLA- haploidentical donor (HID). We conducted a retrospective study of 246 patients with a median age of 37 (9-58) years who were regularly detected MC, complete donor chimera (CC) and regulatory T cells (Treg). The median diagnosis time of SGF was 69 (39-141) days after transplantation . Sixteen patients of SGF received DLI from the alternative donor, including 3 patients who chose DLI from the original donor with no initial response and 13 patients who directly chose DLI from the alternative donor. Sixteen patients with SGF exsisted mixed chimerism synchronously and the rate calculated overall chimerism of MC was 63% (range, 42%-85%) after transplantation. The proportion of Treg decreased significantly in SGF patients from a median of (2.66% ±0.80%) to (0.93%±0.57%) at a time point after transplantation (p=0.02).The DLI of the alternative donor in 14 patients achieved complete response and MC gradually convert to CC state, simultaneously there was significant increase in the Treg fraction [SGF vs CR: (0.93% ± 0.57%) vs (3.61%±0.82%), p=0.01)].For the clinical nonres- ponders from two types of donor there was no significant change in MC and Treg cells. The OS and DFS at 2 years after DLI were 69.7%±3.19 % and 61.3%±4.80%, respectively. DLI from the alternative donor may be an effective treatment for MC with SGF and the mechanism is closely related to the activation of Treg cells level.
Collapse
Affiliation(s)
- Rui-Rui Ren
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang-Ming Ma
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun-Xia Xie
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei-Wei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Wang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Circulating miR-455-3p, miR-5787, and miR-548a-3p as potential noninvasive biomarkers in the diagnosis of acute graft-versus-host disease: a validation study. Ann Hematol 2021; 100:2621-2631. [PMID: 34247256 DOI: 10.1007/s00277-021-04573-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Currently, acute graft-versus-host disease (aGVHD) diagnosis is based on clinical features and pathological findings. Until now, there is no non-invasive diagnostic test for aGVHD. MicroRNAs may act as promising predictive, diagnostic, or prognostic biomarkers for aGVHD. The purpose of the current study was to validate circulating microRNAs as diagnostic biomarkers to assist clinicians in promptly diagnosing aGVHD, so that treatment can be initiated earlier. In the present study, we evaluated six microRNAs (miR-455-3p, miR-5787, miR-6729-5p, miR-6776-5p, miR-548a-3p, and miR-6732-5p) selected from miRNA array data in 40 aGVHD patients compared to 40 non-GVHD patients with RT-qPCR. Target genes of differentially expressed microRNAs (DEMs) were predicted using Targetscan, miRanda, miRDB, miRWalk, PICTAR5, miRmap, DIANA, and miRTarBase algorithms, and their functions were analyzed using EnrichNet, Metascape, and DIANA-miRPath databases. The expressions of plasma miR-455-3p and miR-5787 were significantly downregulated, whereas miR-548a-3p was significantly upregulated in aGVHD patients compared to non-GVHD patients. Moreover, DEMs showed potentially high diagnostic accuracy for aGVHD. In silico analysis of DEMs provided valuable information on the role of DEMs in GVHD, immune regulation, and inflammatory response. Our study suggested that miR-455-3p, miR-5787, and miR-548a-3p could be used as potential noninvasive biomarkers in the diagnosis of aGVHD in addition to possible therapeutic targets in aGVHD.
Collapse
|
6
|
Hsu JW, Farhadfar N, Murthy H, Logan BR, Bo-Subait S, Frey N, Goldstein SC, Horowitz MM, Lazarus H, Schwanke JD, Shah NN, Spellman SR, Switzer GE, Devine SM, Shaw BE, Wingard JR. The Effect of Donor Graft Cryopreservation on Allogeneic Hematopoietic Cell Transplantation Outcomes: A Center for International Blood and Marrow Transplant Research Analysis. Implications during the COVID-19 Pandemic. Transplant Cell Ther 2021; 27:507-516. [PMID: 33865804 DOI: 10.1016/j.jtct.2021.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has resulted in the increased use of cryopreserved grafts for allogeneic hematopoietic cell transplantation (HCT). However, information about the effect of cryopreservation on outcomes for patients receiving allogeneic donor grafts is limited. We evaluated outcomes of HCT recipients who received either fresh or cryopreserved allogeneic bone marrow (BM) or peripheral blood stem cell (PBSC) grafts reported to the Center for International Blood and Marrow Transplant Research. A total of 7397 patients were included in the analysis. Recipients of cryopreserved graft were divided into 3 cohorts based on graft source: HLA-matched related PBSC donors (n = 1051), matched unrelated PBSC donors (n = 678), and matched related or unrelated BM donors (n = 154). These patients were propensity score matched with 5514 patients who received fresh allografts. The primary endpoint was engraftment. Multivariate analyses showed no significant increased risk of delayed engraftment, relapse, nonrelapse mortality (NRM), or survival with cryopreservation of BM grafts. In contrast, cryopreservation of related donor PBSC grafts was associated with decreased platelet recovery (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.68 to 0.78; P < .001) and an increased risk of grade II-IV (HR, 1.27; 95% CI, 1.09 to 1.48; P = .002) and grade III-IV (HR, 1.48; 95% CI, 1.19 to 1.84; P < .001) acute graft-versus-host disease. Cryopreservation of unrelated PBSC grafts was associated with delayed engraftment of neutrophils (HR, 0.77; 95% CI, 0.71 to 0.84; P < .001) and platelets (HR, 0.61; 95% CI, 0.56 to 0.66; P < .001) as well as an increased risk of NRM (HR, 1.4; 95% CI, 1.18 to 1.66; P < .001) and relapse (HR, 1.32; 95% CI, 1.11 to 1.58; P = .002) and decreased progression-free survival (HR, 1.36; 95% CI, 1.20 to 1.55; P < .001) and overall survival (OS) (HR, 1.38; 95% CI, 1.22 to 1.58; P < .001). Reasons for cryopreservation were not routinely collected; however, in a subset of unrelated donor HCT recipients, the reason was typically a change in patient condition. Products cryopreserved for patient reasons were significantly associated with inferior OS in multivariate analysis (HR, 0.65; 95% CI, 0.44 to 0.96; P = .029). We conclude that cryopreservation is associated with slower engraftment of PBSC grafts, which may be associated with inferior transplantation outcomes in some patient populations. However, the small numbers in the cryopreserved BM cohort and the lack of information on the reason for cryopreservation in all patients suggests that these data should be interpreted with caution, particularly in the context of the risks associated with unexpected loss of a graft during the pandemic. Future analyses addressing outcomes when cryopreservation is universally applied are urgently required.
Collapse
Affiliation(s)
- Jack W Hsu
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, Florida.
| | - Nosha Farhadfar
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, Florida.
| | - Hemant Murthy
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida.
| | - Brent R Logan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Stephanie Bo-Subait
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Noelle Frey
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| | - Steven C Goldstein
- AdventHealth Medical Group Blood & Marrow Transplant at Orlando, Orlando, Florida.
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Hillard Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio.
| | - Joshua D Schwanke
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Galen E Switzer
- Professor of Medicine at University of Pittsburgh Medical Center-Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Steven M Devine
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - John R Wingard
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
7
|
Alotaibi AS, Prem S, Chen S, Lipton JH, Kim DD, Viswabandya A, Kumar R, Lam W, Law AD, Mattsson J, Michelis FV. Fresh vs. frozen allogeneic peripheral blood stem cell grafts: A successful timely option. Am J Hematol 2021; 96:179-187. [PMID: 33108034 DOI: 10.1002/ajh.26033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 01/09/2023]
Abstract
Cryopreservation of grafts has been established in autologous and cord blood transplantation, yet there is little experience regarding the effect of cryopreservation with sibling and unrelated grafts. We evaluated the effect of cryopreservation of grafts on allogeneic transplant outcomes using related, unrelated and haploidentical donors, including 958 patients, age 18-74 years (median 55) and using PBSC for various hematologic malignancies. Fresh grafts were received by 648 (68%) patients, 310 (32%) received cryopreserved. There was no difference between fresh vs cryopreserved grafts for neutrophil engraftment (P = .09), platelet engraftment (P = .11), graft failure (5.6% vs 6.8%, P = .46) and grade II-IV acute graft-vs-host disease (GVHD) (P = .71), moderate/severe chronic GVHD was observed in 176 (27%) vs 123 (40%) patients, respectively (P < .001). Multivariable analysis demonstrated no difference between fresh vs cryopreserved for OS (P = .39) and CIR (P = .08) while fresh grafts demonstrated borderline increased NRM (HR 1.27, 95% CI 1.02-1.59, P = .04). Of note, for patients with no or mild chronic GVHD, CIR was less for fresh compared to cryopreserved (HR = 0.67 for fresh, 95% CI 0.48-0.92, P = .01). We conclude there were no differences in engraftment and survival between fresh and cryopreserved grafts for allogeneic HCT, thus establishing cryopreservation to be a safe option for allogeneic HCT.
Collapse
Affiliation(s)
- Ahmad S Alotaibi
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shruti Prem
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shiyi Chen
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H Lipton
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dennis D Kim
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Auro Viswabandya
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rajat Kumar
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Wilson Lam
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Arjun D Law
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Fotios V Michelis
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|