1
|
Chen T, Tang X, Wang Z, Feng F, Xu C, Zhao Q, Wu Y, Sun H, Chen Y. Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising therapeutic treatment for KRAS-mutant cancers. Eur J Med Chem 2023; 261:115828. [PMID: 37778239 DOI: 10.1016/j.ejmech.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Kristen rat sarcoma (KRAS) is one of the most common oncogenes in human cancers. As a guanine nucleotide exchange factor, Son of Sevenless Homologue 1 (SOS1) represents a potential therapeutic concept for the treatment of KRAS-mutant cancers because of its activation on KRAS and downstream signaling pathways. In this review, we provide a comprehensive overview of the structure, biological function, and regulation of SOS1. We also focus on the recent advances in SOS1 inhibitors and emphasize their binding modes, structure-activity relationships and pharmacological activities. We hope that this publication can provide a comprehensive compendium on the rational design of SOS1 inhibitors.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Fernandes HB, de Oliveira IM, Postler TS, Lima SQ, Santos CAC, Oliveira MS, Leão FB, Ghosh S, Souza MC, Andrade W, Silva AM. Transcriptomic analysis reveals that RasGEF1b deletion alters basal and LPS-induced expression of genes involved in chemotaxis and cytokine responses in macrophages. Sci Rep 2023; 13:19614. [PMID: 37950057 PMCID: PMC10638313 DOI: 10.1038/s41598-023-47040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Ras guanine nucleotide exchange factor member 1b (RasGEF1b) of the RasGEF/CDC25 domain-containing family is preferentially expressed by macrophages. However, information is lacking about its role in macrophage function. In this study, we generated mice with ubiquitous deletion of Rasgef1b and used RNA-seq-based transcriptomics to compare the global gene expression in wild-type and knock-out primary bone-marrow-derived macrophages under basal conditions and after lipopolysaccharide (LPS) treatment. Transcriptional filtering identified several genes with significantly different transcript levels between wild-type and knock-out macrophages. In total, 49 and 37 differentially expressed genes were identified at baseline and in LPS-activated macrophages, respectively. Distinct biological processes were significantly linked to down-regulated genes at the basal condition only, and largely included chemotaxis, response to cytokines, and positive regulation of GTPase activity. Importantly, validation by RT-qPCR revealed that the expression of genes identified as down-regulated after LPS stimulation was also decreased in the knock-out cells under basal conditions. We used a luciferase-based reporter assay to showcase the capability of RasGEF1b in activating the Serpinb2 promoter. Notably, knockdown of RasGEF1b in RAW264.7 macrophages resulted in impaired transcriptional activation of the Serpinb2 promoter, both in constitutive and LPS-stimulated conditions. This study provides a small collection of genes that shows relative expression changes effected by the absence of RasGEF1b in macrophages. Thus, we present the first evidence that RasGEF1b mediates the regulation of both steady-state and signal-dependent expression of genes and propose that this GEF plays a role in the maintenance of the basal transcriptional level in macrophages.
Collapse
Affiliation(s)
- Heliana B Fernandes
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Isadora Mafra de Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Design and Development Laboratory, International AIDS Vaccine Initiative, Brooklyn, NY, USA
| | - Sérgio Q Lima
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Cícera A C Santos
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO), Guajará-Mirim, RO, Brazil
| | - Michaelle S Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe B Leão
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria C Souza
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Warrison Andrade
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
3
|
Cuevas-Navarro A, Rodriguez-Muñoz L, Grego-Bessa J, Cheng A, Rauen KA, Urisman A, McCormick F, Jimenez G, Castel P. Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs. eLife 2022; 11:e76495. [PMID: 35467524 PMCID: PMC9068208 DOI: 10.7554/elife.76495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Rodriguez-Muñoz
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
| | | | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine A Rauen
- UC Davis MIND Institute, University of California DavisSacramentoUnited States
- Department of Pediatrics, University of California DavisSacramentoUnited States
| | - Anatoly Urisman
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gerardo Jimenez
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
4
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
5
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. J Fungi (Basel) 2020; 6:jof6040285. [PMID: 33202962 PMCID: PMC7711769 DOI: 10.3390/jof6040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Cell polarization comprises highly controlled processes and occurs in most eukaryotic organisms. In yeast, the processes of budding, mating and filamentation require coordinated mechanisms leading to polarized growth. Filamentous fungi, such as Aspergillus fumigatus, are an extreme example of cell polarization, essential for both vegetative and pathogenic growth. A major regulator of polarized growth in yeast is the small GTPase Rsr1, which is essential for bud-site selection. Here, we show that deletion of the putative A. fumigatus ortholog, rsrA, causes only a modest reduction of growth rate and delay in germ tube emergence. In contrast, overexpression of rsrA results in a morphogenesis defect, characterized by a significant delay in polarity establishment followed by the establishment of multiple growth axes. This aberrant phenotype is reversed when rsrA expression levels are decreased, suggesting that correct regulation of RsrA activity is crucial for accurate patterning of polarity establishment. Despite this finding, deletion or overexpression of rsrA resulted in no changes of A. fumigatus virulence attributes in a mouse model of invasive aspergillosis. Additional mutational analyses revealed that RsrA cooperates genetically with the small GTPase, RasA, to support A. fumigatus viability.
Collapse
|
7
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
8
|
van Hooff JJE, Tromer E, van Dam TJP, Kops GJPL, Snel B. Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. Bioessays 2020; 41:e1900006. [PMID: 31026339 DOI: 10.1002/bies.201900006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Indexed: 01/01/2023]
Abstract
Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.
Collapse
Affiliation(s)
- Jolien J E van Hooff
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Eelco Tromer
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Molecular Cancer Research, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
9
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
10
|
Martin-Vicente A, Souza ACO, Al Abdallah Q, Ge W, Fortwendel JR. SH3-class Ras guanine nucleotide exchange factors are essential for Aspergillus fumigatus invasive growth. Cell Microbiol 2019; 21:e13013. [PMID: 30698898 PMCID: PMC6522298 DOI: 10.1111/cmi.13013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
Abstract
Proper hyphal morphogenesis is essential for the establishment and progression of invasive disease caused by filamentous fungi. In the human pathogen Aspergillus fumigatus, signalling cascades driven by Ras and Ras‐like proteins orchestrate a wide variety of cellular processes required for hyphal growth. For activation, these proteins require interactions with Ras‐subfamily‐specific guanine nucleotide exchange factors (RasGEFs). Although Ras‐protein networks are essential for virulence in all pathogenic fungi, the importance of RasGEF proteins is largely unexplored. A. fumigatus encodes four putative RasGEFs that represent three separate classes of RasGEF proteins (SH3‐, Ras guanyl nucleotide‐releasing protein [RasGRP]–, and LTE‐class), each with fungus‐specific attributes. Here, we show that the SH3‐class and RasGRP‐class RasGEFs are required for properly timed polarity establishment during early growth and branch emergence as well as for cell wall stability. Further, we show that SH3‐class RasGEF activity is essential for polarity establishment and maintenance, a phenotype that is, at least, partially independent of the major A. fumigatus Ras proteins, RasA and RasB. Finally, loss of both SH3‐class RasGEFs resulted in avirulence in multiple models of invasive aspergillosis. Together, our findings suggest that RasGEF activity is essential for the integration of multiple signalling networks to drive invasive growth in A. fumigatus.
Collapse
Affiliation(s)
- Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ana Camila Oliveira Souza
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qusai Al Abdallah
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
12
|
Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 2017; 8:922. [PMID: 29030545 PMCID: PMC5640605 DOI: 10.1038/s41467-017-01019-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1∆) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency. Yeast and cancer cells both favor sugar fermentation in aerobic conditions. Here the authors describe a conserved mechanism from yeast to mammals where the glycolysis intermediate fructose-1,6-bisphosphate binds Cdc25/Sos1 and couples increased glycolytic flux to increased Ras proto-oncoprotein activity.
Collapse
|
13
|
van Dam TJP, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2014; 2:4-16. [PMID: 21686276 DOI: 10.4161/sgtp.2.1.15113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/28/2023] Open
Abstract
Small GTPases are molecular switches at the hub of many signaling pathways and the expansion of this protein family is interwoven with the origin of unique eukaryotic cell features. We have previously reported on the evolution of CDC25 Homology Domain containing proteins, which act as guanine nucleotide exchange factors (GEFs) for Ras-like proteins. We now report on the evolution of both the Ras-like small GTPases as well as the GTPase activating proteins (GAPs) for Ras-like small GTPases. We performed an in depth phylogenetic analysis in 64 genomes of diverse eukaryotic species. These analyses revealed that multiple ancestral Ras-like GTPases and GAPs were already present in the Last Eukaryotic Common Ancestor (LECA), compatible with the presence of RasGEFs in LECA . Furthermore, we endeavor to reconstruct in which order the different Ras-like GTPases diverged from each other. We identified striking differences between the expansion of the various types of Ras-like GTPases and their respective GAPs and GEFs. Altogether, our analysis forms an extensive evolutionary framework for Ras-like signaling pathways and provides specific predictions for molecular biologists and biochemists.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics; Department of Biology; Science Faculty; Utrecht University; Utrecht, The Netherlands
| | | | | |
Collapse
|
14
|
Popovic M, Rensen-de Leeuw M, Rehmann H. Selectivity of CDC25 homology domain-containing guanine nucleotide exchange factors. J Mol Biol 2013; 425:2782-94. [PMID: 23659792 DOI: 10.1016/j.jmb.2013.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/27/2023]
Abstract
The Ras family of small G-proteins plays an essential role in the regulation of a variety of signal transduction processes, ranging from cell cycle control to the regulation of exocytosis. Signalling by the Ras G-proteins is initiated by the CDC25 homology domain (CDC25-HD) containing guanine nucleotide exchange factors (GEFs); each GEF, with its specific selectivity profile towards G-proteins, commonly acts on only a small subset of the Ras family members. Thus, GEFs play a pivotal part in establishing the activation of the downstream signalling routes. The structural basis for the establishment of selectivity in the GEF-G-protein interaction is only partially understood, and several controversies on the selectivity of GEFs are discussed in the literature. In the present study, we undertook a systematic approach to determine the selectivity of CDC25-HD for members of the Ras family. We generated a data set of 126 pairs using a standardised in vitro approach encompassing purified recombinant proteins, and a comprehensive mutational study analysed the basis of the selectivity. Together, these data highlight the distinct selectivity of various GEFs and allow for predictions of untested combinations of GEFs and G-proteins.
Collapse
Affiliation(s)
- Milica Popovic
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Choi J, Cheong K, Jung K, Jeon J, Lee GW, Kang S, Kim S, Lee YW, Lee YH. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 2012. [PMID: 23193288 PMCID: PMC3531191 DOI: 10.1093/nar/gks1163] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In 2007, Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr/) was publicly open with 65 genomes corresponding to 58 fungal and Oomycete species. The CFGP provided six bioinformatics tools, including a novel tool entitled BLASTMatrix that enables search homologous genes to queries in multiple species simultaneously. CFGP also introduced Favorite, a personalized virtual space for data storage and analysis with these six tools. Since 2007, CFGP has grown to archive 283 genomes corresponding to 152 fungal and Oomycete species as well as 201 genomes that correspond to seven bacteria, 39 plants and 105 animals. In addition, the number of tools in Favorite increased to 27. The Taxonomy Browser of CFGP 2.0 allows users to interactively navigate through a large number of genomes according to their taxonomic positions. The user interface of BLASTMatrix was also improved to facilitate subsequent analyses of retrieved data. A newly developed genome browser, Seoul National University Genome Browser (SNUGB), was integrated into CFGP 2.0 to support graphical presentation of diverse genomic contexts. Based on the standardized genome warehouse of CFGP 2.0, several systematic platforms designed to support studies on selected gene families have been developed. Most of them are connected through Favorite to allow of sharing data across the platforms.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suijkerbuijk S, van Dam T, Karagöz G, von Castelmur E, Hubner N, Duarte A, Vleugel M, Perrakis A, Rüdiger S, Snel B, Kops G. The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Dev Cell 2012; 22:1321-9. [DOI: 10.1016/j.devcel.2012.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/17/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
|
17
|
Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. ACTA ACUST UNITED AC 2012; 196:189-201. [PMID: 22270915 PMCID: PMC3265948 DOI: 10.1083/jcb.201103008] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ras superfamily is a fascinating example of functional diversification in the context of a preserved structural framework and a prototypic GTP binding site. Thanks to the availability of complete genome sequences of species representing important evolutionary branch points, we have analyzed the composition and organization of this superfamily at a greater level than was previously possible. Phylogenetic analysis of gene families at the organism and sequence level revealed complex relationships between the evolution of this protein superfamily sequence and the acquisition of distinct cellular functions. Together with advances in computational methods and structural studies, the sequence information has helped to identify features important for the recognition of molecular partners and the functional specialization of different members of the Ras superfamily.
Collapse
Affiliation(s)
- Ana Maria Rojas
- Computational Cell Biology Group, Institute for Predictive and Personalized Medicine of Cancer, 08916 Badalona, Barcelona, Spain.
| | | | | | | |
Collapse
|
18
|
van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol 2011; 73:209-20. [PMID: 22057117 PMCID: PMC3236823 DOI: 10.1007/s00239-011-9469-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/24/2011] [Indexed: 11/27/2022]
Abstract
The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Gloerich M, Bos JL. Regulating Rap small G-proteins in time and space. Trends Cell Biol 2011; 21:615-23. [PMID: 21820312 DOI: 10.1016/j.tcb.2011.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
Abstract
Signaling by the small G-protein Rap is under tight regulation by its GEFs and GAPs. These are multi-domain proteins that are themselves controlled by distinct upstream pathways, and thus couple different extra- and intracellular cues to Rap. The individual RapGEFs and RapGAPs are, in addition, targeted to specific cellular locations by numerous anchoring mechanisms and, consequently, may control different pools of Rap. Here, we review the various activating signals and targeting mechanisms of these proteins and discuss their contribution to the spatiotemporal regulation and biological functions of the Rap proteins.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
20
|
Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10:842-57. [PMID: 21102635 PMCID: PMC3124093 DOI: 10.1038/nrc2960] [Citation(s) in RCA: 592] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is now considerable and increasing evidence for a causal role for aberrant activity of the Ras superfamily of small GTPases in human cancers. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. A common mechanism of GTPase deregulation in cancer is the deregulated expression and/or activity of their regulatory proteins, guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound state and GTPase-activating proteins (GAPs) that return the GTPase to its GDP-bound inactive state. In this Review, we assess the association of GEFs and GAPs with cancer and their druggability for cancer therapeutics.
Collapse
Affiliation(s)
- Dominico Vigil
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
21
|
Rap1, a mercenary among the Ras-like GTPases. Dev Biol 2010; 340:1-9. [PMID: 20060392 DOI: 10.1016/j.ydbio.2009.12.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 01/07/2023]
Abstract
The small Ras-like GTPase Rap1 is an evolutionary conserved protein that originally gained interest because of its capacity to revert the morphological phenotype of Ras-transformed fibroblasts. Rap1 is regulated by a large number of stimuli that include growth factors and cytokines, but also physical force and osmotic stress. Downstream of Rap1, a plethora of effector molecules has been proposed on the basis of biochemical studies. Here, we present an overview of genetic studies on Rap1 in various model organisms and relate the observed phenotypes to in vitro studies. The picture that emerges is one in which Rap1 is a versatile regulator of morphogenesis, by regulating diverse processes that include establishment of cellular polarity, cell-matrix interactions and cell-cell adhesion. Surprisingly, genetic experiments indicate that in the various model organisms, Rap1 uses distinct effector molecules that impinge upon the actin cytoskeleton and adhesion molecules.
Collapse
|