1
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
3
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. p-Coumaric acid pronounced protective effect against potassium bromate-induced hepatic damage in Swiss albino mice. Cell Biochem Funct 2024; 42:e4076. [PMID: 38895919 DOI: 10.1002/cbf.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College, Paramakudi, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
4
|
Chou AH, Lee HC, Liao CC, Yu HP, Liu FC. ERK/NF-kB/COX-2 Signaling Pathway Plays a Key Role in Curcumin Protection against Acetaminophen-Induced Liver Injury. Life (Basel) 2023; 13:2150. [PMID: 38004290 PMCID: PMC10672507 DOI: 10.3390/life13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Recent experimental studies have highlighted the beneficial effects of curcumin on liver injury induced by acetaminophen (APAP). However, the specific molecular mechanisms underlying curcumin's hepatoprotective effects against APAP-induced liver injury remain to be fully elucidated. This study aimed to investigate the therapeutic effect of curcumin on APAP-induced liver injury using a mouse model. In the experiment, mice were subjected to an intraperitoneal hepatotoxic dose of APAP (300 mg/kg) to induce hepatotoxicity. After 30 min of APAP administration, the mice were treated with different concentrations of curcumin (0, 10, 25, or 50 mg/kg). After 16 h, mice with hepatotoxicity showed elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), hepatic myeloperoxidase (MPO), TNF-α, and IL-6, and decreased levels of glutathione (GSH). Moreover, there was an increased infiltration of neutrophils and macrophages following intraperitoneal injection of APAP. However, curcumin-treated mice displayed a pronounced reduction in serum ALT, AST, hepatic MPO, TNF-α, and IL-6 levels, coupled with a notable elevation in GSH levels compared to the APAP-treated hepatotoxic mice. Moreover, curcumin treatment led to reduced infiltration of neutrophils and macrophages. Additionally, curcumin inhibited the phosphorylation of ERK and NF-kB proteins while reducing the expression of cyclooxygenase-2 (COX-2). These findings highlight the hepatoprotective potential of curcumin against APAP-induced liver injury through the suppression of the ERK, NF-kB, and COX-2 signaling pathways.
Collapse
Affiliation(s)
- An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
PLX8394, a RAF inhibitor, inhibits enterovirus 71 replication by blocking RAF/MEK/ERK signaling. Virol Sin 2023; 38:276-284. [PMID: 36669700 PMCID: PMC10176437 DOI: 10.1016/j.virs.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Enterovirus 71 (EV71) poses a serious threat to human health, with scattered outbreaks worldwide. There are several vaccines against a few EV71 strains but no efficient drug for the treatment of EV71 infection. Therefore, it is urgent and of significance to develop anti-EV71 drugs. Here, we found that PLX8394, a RAF inhibitor, possesses high antiviral activity against EV71 in vitro, being superior to the traditional clinical drug ribavirin. Moreover, PLX8394 exhibits broad-spectrum antiviral activity against enteroviruses. Notably, in a suckling mouse model, PLX8394 provided a 70% protection rate for EV71-infected mice, reduced the viral load in liver and heart tissues, and relieved the inflammatory response. A mechanistic study showed that PLX8394 inhibited EV71 by suppressing the RAF/MEK/ERK signaling pathway. Thus, PLX8394 lays a foundation for the development of new drugs against EV71.
Collapse
|
6
|
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, Zhang S, Zhang L. Proteomic and metabonomic analysis uncovering Enterovirus A71 reprogramming host cell metabolic pathway. Proteomics 2023; 23:e2200362. [PMID: 36254857 DOI: 10.1002/pmic.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
8
|
Zhao Y, Li L, Wang X, He S, Shi W, Chen S. Temporal Proteomic and Phosphoproteomic Analysis of EV-A71-Infected Human Cells. J Proteome Res 2022; 21:2367-2384. [DOI: 10.1021/acs.jproteome.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Xinhui Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
9
|
Gong Z, Gao X, Yang Q, Lun J, Xiao H, Zhong J, Cao H. Phosphorylation of ERK-Dependent NF-κB Triggers NLRP3 Inflammasome Mediated by Vimentin in EV71-Infected Glioblastoma Cells. Molecules 2022; 27:molecules27134190. [PMID: 35807435 PMCID: PMC9268588 DOI: 10.3390/molecules27134190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Enterovirus 71 (EV71) is a dominant pathogenic agent that may cause severe central nervous system (CNS) diseases among infants and young children in the Asia-pacific. The inflammasome is closely implicated in EV71-induced CNS injuries through a series of signaling pathways. However, the activation pathway of NLRP3 inflammasome involved in EV71-mediated CNS injuries remains poorly defined. In the studies, EV71 infection, ERK1/2 phosphorylation, and activation of NLRP3 are abolished in glioblastoma cells with low vimentin expression by CRISPR/Cas9-mediated knockdown. PD098059, an inhibitor of p-ERK, remarkably blocks the vimentin-mediated ERK1/2 phosphorylation in EV71-infected cells. Nuclear translocation of NF-κB p65 is dependent on p-ERK in a time-dependent manner. Moreover, NLRP3 activation and caspase-1 production are limited in EV71-infected cells upon the caffeic acid phenethyl ester (CAPE) administration, an inhibitor of NF-κB, which contributes to the inflammasome regulation. In conclusion, these results suggest that EV71-mediated NLRP3 inflammasome could be activated via the VIM-ERK-NF-κB pathway, and the treatment of the dephosphorylation of ERK and NF-κB inhibitors is beneficial to host defense in EV71-infected CNS.
Collapse
Affiliation(s)
- Zelong Gong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Xuefeng Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Qingqing Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jingxian Lun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Hansen Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jiayu Zhong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Correspondence: ; Tel.: +020-61648723
| |
Collapse
|
10
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
11
|
Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X, Li W. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl Trop Dis 2022; 16:e0010402. [PMID: 35482821 PMCID: PMC9089906 DOI: 10.1371/journal.pntd.0010402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/10/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.
Collapse
Affiliation(s)
- Yudan Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongwu Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Min Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuening Qin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiran Yu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huimin Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoyun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
12
|
Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7664290. [PMID: 35242277 PMCID: PMC8888119 DOI: 10.1155/2022/7664290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.
Collapse
|
13
|
Chao WW, Kuo YH, Lin BF. Isolation and Identification of Andrographis paniculata ( Chuanxinlian) and Its Biologically Active Constituents Inhibited Enterovirus 71-Induced Cell Apoptosis. Front Pharmacol 2021; 12:762285. [PMID: 34955832 PMCID: PMC8692857 DOI: 10.3389/fphar.2021.762285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
Aim:Andrographis paniculata (Burm. f.) Nees (also known as Chuanxinlian in Chinese) of Acanthaceae family is one of the Chinese herbs reputed to be effective in the treatment of inflammation, infection, cold, and fever. Enterovirus 71 (EV71) is one of the most important enteroviruses that cause hand, foot, and mouth disease (HFMD) accompanied with neurological complication. Methods: To explore an anti-infective Chinese herb medicine, pure compounds isolated or synthesized analogues from A. paniculata (AP) ethyl acetate (EtOAc) extract are used to explore their anti-EV71-induced cytotoxicity. The antiviral activity was determined by cytopathic effect (CPE) reduction, and sub-G1 assays were used for measuring lysis and apoptosis of EV71-infected rhabdomyosarcoma (RD) cells. IFNγ-driven luciferase reporter assay was used to evaluate their potential roles in activation of immune responses. Results: Our data showed that EV71-induced sub-G1 phase of RD cells was dose dependently increased. Highly apoptotic EV71-infected RD cells were reduced by AP extract treatment. Ergosterol peroxide (4) has the most anti-apoptotic effect among these seven compounds. In addition, 3,19-O-acetyl-14-deoxy-11,12-didehydroandrographolide (8) synthesized from acetylation of compound 7 showed significantly better antiviral activity and the lowest sub-G1 phase of 6%–18%. Further investigation of IFNγ-inducer activity of these compounds showed that compounds 3, 6, 10, 11, and 12 had significantly higher IFNγ luciferase activities, suggesting their potential to promote IFNγ expression and thus activate immune responses for antivirus function. Conclusion: Our study demonstrated that bioactive compounds of AP and its derivatives either protecting EV71-infected RD cells from sub-G1 arrest or possessing IFNγ-inducer activity might be feasible for the development of anti-EV71 agents.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
15
|
Du L, Wang H, Liu F, Wei Z, Weng C, Tang J, Feng WH. NSP2 Is Important for Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus to Trigger High Fever-Related COX-2-PGE2 Pathway in Pigs. Front Immunol 2021; 12:657071. [PMID: 33995374 PMCID: PMC8118602 DOI: 10.3389/fimmu.2021.657071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
In 2006, atypical porcine reproductive and respiratory syndrome (PRRS) caused by a highly pathogenic PRRSV (HP-PRRSV) strain broke out in China. Atypical PRRS is characterized by extremely high fever and high mortality in pigs of all ages. Prostaglandin E2 (PGE2) derived from arachidonic acid through the activation of the rate-limiting enzyme cyclooxygenase type 1/2 (COX-1/2) plays an important role in fever. Here, we showed that HP-PRRSV infection increased PGE2 production in microglia via COX-2 up-regulation depending on the activation of MEK1-ERK1/2-C/EBPβ signaling pathways. Then, we screened HP-PRRSV proteins and demonstrated that HP-PRRSV nonstructural protein 2 (NSP2) activated MEK1-ERK1/2-C/EBPβ signaling pathways by interacting with 14-3-3ζ to promote COX-2 expression, leading to PGE2 production. Furthermore, we identified that the amino acid residues 500-596 and 658-777 in HP-PRRSV NSP2 were essential to up-regulate COX-2 expression and PGE2 production. Finally, we made mutant HP-PRRS viruses with the deletion of residues 500-596 and/or 658-777, and found out that these viruses had impaired ability to up-regulate COX-2 and PGE2 production in vitro and in vivo. Importantly, pigs infected with the mutant viruses had relieved fever, clinical symptoms, and mortality. These data might help us understand the molecular mechanisms underlying the high fever and provide clues for the development of HP-PRRSV attenuated vaccines.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyu Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
The Effect of a Unique Region of Parvovirus B19 Capsid Protein VP1 on Endothelial Cells. Biomolecules 2021; 11:biom11040606. [PMID: 33921883 PMCID: PMC8073096 DOI: 10.3390/biom11040606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells.
Collapse
|
17
|
Yang CC, Hsiao LD, Su MH, Yang CM. Sphingosine 1-Phosphate Induces Cyclooxygenase-2/Prostaglandin E 2 Expression via PKCα-dependent Mitogen-Activated Protein Kinases and NF-κB Cascade in Human Cardiac Fibroblasts. Front Pharmacol 2020; 11:569802. [PMID: 33192511 PMCID: PMC7662885 DOI: 10.3389/fphar.2020.569802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
In the regions of tissue injuries and inflammatory diseases, sphingosine 1-phosphate (S1P), a proinflammatory mediator, is increased. S1P may induce the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various types of cells to exacerbate heart inflammation. However, the detailed molecular mechanisms by which S1P induces COX-2 expression in human cardiac fibroblasts (HCFs) remain unknown. HCFs were incubated with S1P and analyzed by Western blotting, real time-Polymerase chain reaction (RT-PCR), and immunofluorescent staining. Our results indicated that S1P activated S1PR1/3-dependent transcriptional activity to induce COX-2 expression and PGE2 production. S1P recruited and activated PTX-sensitive Gi or -insensitive Gq protein-coupled S1PR and then stimulated PKCα-dependent phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, leading to activating transcription factor NF-κB. Moreover, S1P-activated NF-κB was translocated into the nucleus and bound to its corresponding binding sites on COX-2 promoters determined by chromatin immunoprecipitation (ChIP) and promoter-reporter assays, thereby turning on COX-2 gene transcription associated with PGE2 production in HCFs. These results concluded that in HCFs, activation of NF-κB by PKCα-mediated MAPK cascades was essential for S1P-induced up-regulation of the COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 production regulated by the S1P/S1PRs system on cardiac fibroblasts may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Tao-Yuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Hsiu Su
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
18
|
Zhou Y, Tong T, Jiang X, Fang L, Wu Y, Liang J, Xiao S. GSH-ZnS Nanoparticles Exhibit High-Efficiency and Broad-Spectrum Antiviral Activities via Multistep Inhibition Mechanisms. ACS APPLIED BIO MATERIALS 2020; 3:4809-4819. [PMID: 35021727 DOI: 10.1021/acsabm.0c00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
19
|
Wang J, Han Y, Wang M, Zhao Q, Chen X, Liu X. Natural triterpenoid saponin Momordin Ic suppresses HepG2 cell invasion via COX-2 inhibition and PPARγ activation. Toxicol In Vitro 2020; 65:104784. [DOI: 10.1016/j.tiv.2020.104784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
20
|
Zeng QX, Wang HQ, Wei W, Guo TT, Yu L, Wang YX, Li YH, Song DQ. Synthesis and biological evaluation of berberine derivatives as a new class of broad-spectrum antiviral agents against Coxsackievirus B. Bioorg Chem 2019; 95:103490. [PMID: 31855821 DOI: 10.1016/j.bioorg.2019.103490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
A series of novel berberine (BBR) analogues were prepared and tested for their antiviral potencies against six different genotype Coxsackievirus B (CVB1-6) strains, taking BBR core for structural modification. Structure-activity relationship (SAR) research revealed that introduction of a primary amine through a linker at position 3 might be beneficial for both antiviral activity and safety. Compound 14c displayed most promising inhibitory potency with IC50 values of 3.08-9.94 µM against tested CVBs 2-6 strains and satisfactory SI value of 34.3 on CVB3, better than that of BBR. Also, 14c could inhibit CVB3 replication through down-regulating the expression of VP1 protein and VP1 RNA. The mechanism revealed that 14c could suppress host components JNK-MAPK, ERK-MAPK and p38-MAPK activation. Therefore, BBR derivatives were considered to be a new class of anti-CVB agents with an advantage of broad-spectrum anti-CVB potency.
Collapse
Affiliation(s)
- Qing-Xuan Zeng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Qiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Wei Wei
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Lian Yu
- Jiamusi University, Heilongjiang Province, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu-Huan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Bai J, Chen X, Liu Q, Zhou X, Long JE. Characteristics of enterovirus 71-induced cell death and genome scanning to identify viral genes involved in virus-induced cell apoptosis. Virus Res 2019; 265:104-114. [DOI: 10.1016/j.virusres.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
|
22
|
Long-chain fatty acid-induced intracellular signaling in GPR120-expressing brush cells at the limiting ridge of the murine stomach. Cell Tissue Res 2018; 376:71-81. [PMID: 30560457 DOI: 10.1007/s00441-018-2972-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/23/2018] [Indexed: 12/29/2022]
Abstract
Brush cells at the gastric groove have been proposed to operate as sensory cells capable of sensing constituents of ingested food. Recent studies have indicated that these cells express GPR120 (also known as FFAR4), the G protein-coupled receptor for long-chain fatty acids (LCFAs). However, functional implications of this receptor in brush cells have remained elusive. Here, we show that a great proportion of brush cells express GPR120. We used phosphorylation of the extracellular signal-regulated kinases 1/2 (ERK1/2) as a readout to monitor brush cell responses to the LCFAs oleic acid and α-linolenic acid. Our results demonstrate that ERK1/2 phosphorylation is increased upon exposure to both fatty acids. Increased ERK1/2 phosphorylation is accompanied by upregulated mRNA and protein levels of cyclooxygenase 2 (COX-2), a key enzyme for prostaglandin biosynthesis. Immunohistochemical experiments confirmed that oleic acid caused ERK1/2 phosphorylation and induced COX-2 expression in brush cells. Our results indicate that LCFA sensing elicits a signaling process in brush cells that may be relevant for a local regulation of gastric functions.
Collapse
|
23
|
Yao C, Hu K, Xi C, Li N, Wei Y. Transcriptomic analysis of cells in response to EV71 infection and 2Apro as a trigger for apoptosis via TXNIP gene. Genes Genomics 2018; 41:343-357. [DOI: 10.1007/s13258-018-0760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
24
|
Tang WF, Huang RT, Chien KY, Tang P, Horng JT. Large-Scale Proteomic Identification of Targets of Cellular miR-197 Downregulated by Enterovirus A71. J Proteome Res 2018; 18:449-460. [PMID: 30336044 DOI: 10.1021/acs.jproteome.8b00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis. We employed a combination of mass-spectrometry-based quantitative proteomics with the stable isotope labeling with amino acids in cell culture (SILAC) approach for the identification of the miR-197 target genes in RD cells and to investigate the differential expression of the prospective target proteins. A total of 1822 proteins were repeatedly identified in miR-197-transfected RD cells, 106 of which were predicted to have seed sites by TargetScan. Notably, seven of eight selected genes potentially related to viral replication and immune response were validated as direct miR-197 targets, using a luciferase 3'-untranslated region (UTR) reporter assay. The expression levels of three selected endogenous molecules (ITGAV, ETF1, and MAP2K1/MEK1) were significantly reduced when RD cells were transfected with a miR-197 mimic. Our results provide a comprehensive database of miR-197 targets, which might provide better insights into the understanding of host-virus interaction.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Research Center for Emerging Viral Infections , Chang Gung University , Taoyuan 333 , Taiwan
| | - Ru-Ting Huang
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Clinical Proteomics Core Laboratory , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan
| | - Petrus Tang
- Bioinformatics Center , Chang Gung University, Chang Gung University , Taoyuan 333 , Taiwan.,Molecular Infectious Disease Research Center , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Molecular Infectious Disease Research Center , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan 333 , Taiwan.,Research Center for Emerging Viral Infections , Chang Gung University , Taoyuan 333 , Taiwan
| |
Collapse
|
25
|
Synthesis and Evolution of Berberine Derivatives as a New Class of Antiviral Agents against Enterovirus 71 through the MEK/ERK Pathway and Autophagy. Molecules 2018; 23:molecules23082084. [PMID: 30127288 PMCID: PMC6222558 DOI: 10.3390/molecules23082084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Taking berberine (BBR) as the lead, 23 new BBR derivatives were synthesized and examined for their antiviral activities against four different genotype enterovirus 71 (EV71) strains with a cytopathic effect (CPE) assay. Structure-activity relationship (SAR) studies indicated that introduction of a suitable substituent at the 9-position might be beneficial for potency. Among them, compound 2d exhibited most potent activities with IC50 values of 7.12⁻14.8 μM, similar to that of BBR. The effect of 2d was further confirmed in a dose-dependent manner both in RNA and protein level. The mechanism revealed that 2d could inhibit the activation of MEK/ERK signaling pathway. Meanwhile, it could suppress the EV71-induced autophagy by activating AKT and inhibiting the phosphorylation of JNK and PI3KIII proteins. We consider BBR derivatives to be a new family of anti-EV71 agents through targeting host components, with an advantage of broad-spectrum anti-EV71 potency.
Collapse
|
26
|
Alfajaro MM, Cho EH, Park JG, Kim JY, Soliman M, Baek YB, Kang MI, Park SI, Cho KO. Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLoS One 2018; 13:e0200726. [PMID: 30021004 PMCID: PMC6051663 DOI: 10.1371/journal.pone.0200726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.
Collapse
Affiliation(s)
- Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Chen D, Tian X, Zou X, Xu S, Wang H, Zheng N, Wu Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-κB pathway. Int Immunopharmacol 2018; 60:111-120. [DOI: 10.1016/j.intimp.2018.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|
28
|
Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses 2018; 10:v10040155. [PMID: 29597291 PMCID: PMC5923449 DOI: 10.3390/v10040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Collapse
|
29
|
Chang Z, Wang Y, Bian L, Liu Q, Long JE. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124. J Gen Virol 2017; 98:3008-3025. [PMID: 29120300 DOI: 10.1099/jgv.0.000967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (pY705-STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.
Collapse
Affiliation(s)
- Zhangmei Chang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Yan Wang
- Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Liang Bian
- Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Qingqing Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| |
Collapse
|
30
|
Wang HQ, Hu J, Yan HY, Wu S, Li YH. Corydaline inhibits enterovirus 71 replication by regulating COX-2 expression. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1124-1133. [PMID: 29034730 DOI: 10.1080/10286020.2017.1386658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Enterovirus 71 (EV71) is a huge threat to the worldwide public health and there is no approved antiviral drug for EV71-induced disease therapy. Corydaline exists antiallergic and antinociceptive activities, but the anti-EV71 activity of corydaline is still not reported. In this study, corydaline could suppress the expression of viral structural and non-structural proteins. Furthermore, corydaline inhibits EV71 replication by suppressing the COX-2 expression and the phosphorylation of JNK MAPK and P38 MAPK but not ERK MAPK in vitro. Based on these findings, corydaline could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
Collapse
Affiliation(s)
- Hui-Qiang Wang
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jin Hu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Hai-Yan Yan
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Shuo Wu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Yu-Huan Li
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
31
|
Zhang Z, Wang B, Wu S, Wen Y, Wang X, Song X, Zhang J, Hou L, Chen W. PD169316, a specific p38 inhibitor, shows antiviral activity against Enterovirus71. Virology 2017; 508:150-158. [PMID: 28545002 DOI: 10.1016/j.virol.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
Abstract
Enterovirus71 (EV71) is the major causative agent of hand, foot and mouth disease, which threatens the health of infants and young children. The expression of inflammatory cytokines induced by this viral infection aggravate the illness. Here, we describe the anti-EV71 activity of a specific p38 inhibitor that regulates the p38-MAPK signaling pathway. PD169316 was specifically selected from a MAPK compound library due to its significant inhibitory effect on EV71 replication. PD169316 also reduced EV71-induced apoptosis. Animal experiments showed that PD169316 can dampen the replication of EV71, reduce tissue damage and inhibit the release of inflammatory cytokines, thereby alleviating the severe diseases caused by EV71 in suckling mice.
Collapse
Affiliation(s)
- Zhe Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Busen Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yanbo Wen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xinyi Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaohong Song
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jinlong Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
32
|
Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem Pharmacol 2017; 132:77-91. [DOI: 10.1016/j.bcp.2017.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
|
33
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
34
|
Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci Rep 2017; 7:44701. [PMID: 28317866 PMCID: PMC5357798 DOI: 10.1038/srep44701] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.
Collapse
|
35
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
36
|
Wang H, Li K, Ma L, Wu S, Hu J, Yan H, Jiang J, Li Y. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virol J 2017; 14:2. [PMID: 28081706 PMCID: PMC5234143 DOI: 10.1186/s12985-016-0674-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Background The MEK-ERK signaling pathway and autophagy play an important role for enterovirus71(EV71) replication. Inhibition of MEK-ERK signaling pathway and autophagy is shown to impair EV71 replication. Berberine (BBR), an isoquinoline alkaloid isolated from Berberis vulgaris L., has been reported to have ability to regulate this signaling pathway and autophagy. Herein, we want to determine whether berberine can inhibit EV71 infection by downregulating the MEK/ERK signaling pathway and autophagy. Methods The antiviral effect of berberine was determined by cytopathic effect (CPE) assay, western blotting assay and qRT-PCR assay. The mechanism of BBR anti-virus was determined by western blotting assay and immunofluorescence assay. Results We showed that berberine does-dependently reduced EV71 RNA and protein synthesis, which was, at least in part, the result of inhibition of activation of MEK/ERK signaling pathway. Furthermore, we found that berberine suppressed the EV71-induced autophagy by activating AKT protein and inhibiting the phosphorylation of JNK and PI3KIII. Conclusions BBR inhibited EV71 replication by downregulating autophagy and MEK/ERK signaling pathway. These findings suggest that BBR may be a potential agent or supplement against EV71 infection.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linlin Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
37
|
Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J. EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex. PLoS Pathog 2017; 13:e1006123. [PMID: 28060938 PMCID: PMC5245909 DOI: 10.1371/journal.ppat.1006123] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/19/2017] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Activation of NLRP3 inflammasome is important for effective host defense against invading pathogen. Together with apoptosis-associated speck-like protein containing CARD domain (ASC), NLRP3 induces the cleavage of caspase-1 to facilitate the maturation of interleukin-1beta (IL-1β), an important pro-inflammatory cytokine. IL-1β subsequently plays critical roles in inflammatory responses by activating immune cells and inducing many secondary pro-inflammatory cytokines. Although the role of NLRP3 inflammasome in immune response is well defined, the mechanism underlying its assembly modulated by pathogen infection remains largely unknown. Here, we identified a novel mechanism by which enterovirus 71 (EV71) facilitates the assembly of NLRP3 inflammasome. Our results show that EV71 induces production and secretion of IL-1β in macrophages and peripheral blood mononuclear cells (PBMCs) through activation of NLRP3 inflammasome. EV71 replication and protein synthesis are required for NLRP3-mediated activation of IL-1β. Interestingly, EV71 3D protein, a RNA-dependent RNA polymerase (RdRp) was found to stimulate the activation of NLRP3 inflammasome, the cleavage of pro-caspase-1, and the release of IL-1β through direct binding to NLRP3. More importantly, 3D interacts with NLRP3 to facilitate the assembly of inflammasome complex by forming a 3D-NLRP3-ASC ring-like structure, resulting in the activation of IL-1β. These findings demonstrate a new role of 3D as an important player in the activation of inflammatory response, and identify a novel mechanism underlying the modulation of inflammasome assembly and function induced by pathogen invasion.
Collapse
Affiliation(s)
- Wenbiao Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pan Pan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yecheng Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| |
Collapse
|
38
|
Goes GR, Rocha PS, Diniz ARS, Aguiar PHN, Machado CR, Vieira LQ. Trypanosoma cruzi Needs a Signal Provided by Reactive Oxygen Species to Infect Macrophages. PLoS Negl Trop Dis 2016; 10:e0004555. [PMID: 27035573 PMCID: PMC4818108 DOI: 10.1371/journal.pntd.0004555] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/26/2016] [Indexed: 12/30/2022] Open
Abstract
Background During Trypanosoma cruzi infection, macrophages produce reactive oxygen species (ROS) in a process called respiratory burst. Several works have aimed to elucidate the role of ROS during T. cruzi infection and the results obtained are sometimes contradictory. T. cruzi has a highly efficiently regulated antioxidant machinery to deal with the oxidative burst, but the parasite macromolecules, particularly DNA, may still suffer oxidative damage. Guanine (G) is the most vulnerable base and its oxidation results in formation of 8-oxoG, a cellular marker of oxidative stress. Methodology/Principal Findings In order to investigate the contribution of ROS in T. cruzi survival and infection, we utilized mice deficient in the gp91phox (Phox KO) subunit of NADPH oxidase and parasites that overexpress the enzyme EcMutT (from Escherichia coli) or TcMTH (from T. cruzi), which is responsible for removing 8-oxo-dGTP from the nucleotide pool. The modified parasites presented enhanced replication inside murine inflammatory macrophages from C57BL/6 WT mice when compared with control parasites. Interestingly, when Phox KO macrophages were infected with these parasites, we observed a decreased number of all parasites when compared with macrophages from C57BL/6 WT. Scavengers for ROS also decreased parasite growth in WT macrophages. In addition, treatment of macrophages or parasites with hydrogen peroxide increased parasite replication in Phox KO mice and in vivo. Conclusions Our results indicate a paradoxical role for ROS since modified parasites multiply better inside macrophages, but proliferation is significantly reduced when ROS is removed from the host cell. Our findings suggest that ROS can work like a signaling molecule, contributing to T. cruzi growth inside the cells. The parasite Trypanosoma cruzi is the causative agent of Chagas’ disease, which affects 10 million people, mainly in Latin American. Macrophages are one of the first cellular actors facing the invasion of pathogens and during T. cruzi infection, produce reactive oxygen species (ROS). To deal with oxidative stress, T. cruzi has an antioxidant machinery and, to repair DNA damage triggered by ROS, this parasite possesses enzymes of the oxidized guanine DNA repair system. The understanding of the role of ROS in the infection by T. cruzi can provide us with good insights on T. cruzi biology and virulence. While some studies suggest that ROS is related to parasite control, others have demonstrated that ROS is important for proliferation of this parasite. To investigate the contribution of ROS in T. cruzi infection, we utilized mice deficient in the production of ROS (Phox KO) and parasites that overexpress the enzymes related to DNA repair. Our results show that ROS is not only important for the battle against pathogens, but suggest that ROS can also work as a signal that contributes to the growth of this parasite.
Collapse
Affiliation(s)
- Grazielle R. Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Peter S. Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline R. S. Diniz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H. N. Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leda Q. Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
39
|
Song J, Hu Y, Hu Y, Wang J, Zhang X, Wang L, Guo L, Wang Y, Ning R, Liao Y, Zhang Y, Zheng H, Shi H, He Z, Li Q, Liu L. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD. Virus Res 2016; 214:1-10. [PMID: 26775814 DOI: 10.1016/j.virusres.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yunguang Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Xiaolong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yancui Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
40
|
Yang CM, Lin CC, Hsieh HL. High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis. Mol Neurobiol 2016; 54:470-483. [PMID: 26742524 DOI: 10.1007/s12035-015-9666-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/17/2015] [Indexed: 12/26/2022]
Abstract
An elevated level of glucose has been found in the blood of hyperglycemia and diabetes patients associated with several central nervous system (CNS) complications. These disorders may be due to the up-regulation of many neurotoxic mediators by host cells triggered by high glucose (HG). Moreover, heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. However, the molecular mechanisms underlying HG-induced HO-1 expression in brain cells remain poorly defined. Thus, we use the rat brain astrocytes (RBA-1) as a model to investigate the signaling mechanisms of HO-1 induction by HG and its effects on neuronal cells. We demonstrated that HG induced HO-1 expression via a reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)- and mitochondrion-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream transcriptional factors nuclear factor-kappaB (NF-κB) and c-Fos/activator protein 1 (AP-1), respectively. Subsequently, the activated NF-κB and AP-1 turned on transcription of HO-1 gene. These results indicated that in brain astrocytes, activation of MAPK-mediated NF-κB and c-Fos/AP-1 cascades by Nox/ROS and mitoROS-dependent events is essential for HO-1 up-regulation induced by HG. Moreover, we found that HG-induced extracellular ROS increase and HO-1 expression from astrocytes resulted in neuronal apoptosis. These results offers new insights into the mechanisms and effects of the action of HG, supporting that HG may cause brain disorders in the development of diabetes- and hyperglycemia-induced CNS complications such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Gui-Shan, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Gui-Shan, Tao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
41
|
Ho BC, Yang PC, Yu SL. MicroRNA and Pathogenesis of Enterovirus Infection. Viruses 2016; 8:v8010011. [PMID: 26751468 PMCID: PMC4728571 DOI: 10.3390/v8010011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 10048, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
| |
Collapse
|
42
|
Puliyappadamba VT, Thulasidasan AKT, Vijayakurup V, Antony J, Bava SV, Anwar S, Sundaram S, Anto RJ. Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis. Biofactors 2015; 41:431-42. [PMID: 26643788 DOI: 10.1002/biof.1244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022]
Abstract
Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer.
Collapse
Affiliation(s)
| | - Arun Kumar T Thulasidasan
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Smitha V Bava
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Shabna Anwar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Thiruvananthapuram, Kerala, 695011, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
43
|
Chang CY, Li JR, Ou YC, Chen WY, Liao SL, Raung SL, Hsiao AL, Chen CJ. Enterovirus 71 infection caused neuronal cell death and cytokine expression in cultured rat neural cells. IUBMB Life 2015; 67:789-800. [PMID: 26399559 DOI: 10.1002/iub.1434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022]
Abstract
Fatal enterovirus type-71 (EV71) cases are associated with central nervous system infection characterized by inflammatory cell infiltration and activation, cytokine overproduction, and neuronal cell death. Although EV71 antigen has been detected in neurons and glia, the molecular mechanisms underlying EV71-associated neuroinflammation and neuronal cell death are not fully understood. Using cultured rodent neural cell models, we found that EV71 infection preferentially caused cell death in neurons but not brain-resident immune cells astrocytes and microglia. Neurons, astrocytes, and microglia responded to EV71 infection by releasing distinct profiles of cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, regulated on activation normal T cell expressed and secreted (RANTES), and glutamate. EV71 infection-induced neuronal cell death correlated well with the elevated production of NO, TNF-α, IL-1β, and glutamate as well as activation of microglia. Exogenous addition studies further demonstrated the neurotoxic potential of NO, TNF-α, IL-1β, and glutamate. EV71 infection-induced cytokine expression was accompanied by activation of protein tyrosine phosphorylation, mitogen-activated protein kinases (MAPKs), and NF-κB. Intriguingly, EV71 susceptibility was accompanied by infection-elevated neuronal human scavenger receptor class B member 2 expression in cultured neural cells with age-dependent manner. Biochemical and pharmacological studies revealed that after EV71 infection, microglia and accompanied cytokines play an active role in triggering bystander damage to neurons involving the tyrosine kinase/MAPKs/NF-κB signaling cascade. These data suggest that bystander damage caused by activated glia particularly the microglia could be an alternative mechanism of EV71-associated neuronal cell death. However, its clinical importance and implication require further investigation.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng-Yuan Hospital, Taichung, Taiwan.,Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shue-Ling Raung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - An-Lu Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
44
|
Langellotti C, Cesar G, Soria I, Quattrocchi V, Jancic C, Zamorano P, Vermeulen M. Foot-and-mouth disease virus infection of dendritic cells triggers phosphorylation of ERK1/2 inducing class I presentation and apoptosis. Vaccine 2015. [PMID: 26212005 DOI: 10.1016/j.vaccine.2015.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.
Collapse
Affiliation(s)
- Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gonzalo Cesar
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | - Carolina Jancic
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Zamorano
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Wang C, Zhou R, Zhang Z, Jin Y, Cardona CJ, Xing Z. Intrinsic apoptosis and proinflammatory cytokines regulated in human astrocytes infected with enterovirus 71. J Gen Virol 2015; 96:3010-3022. [PMID: 26296773 DOI: 10.1099/jgv.0.000235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV71) has emerged as a clinically important neurotropic virus following poliovirus eradication. However, the mechanism of EV71-induced neurological manifestation remains largely unclear. In this study, we showed that human astrocytes were susceptible to EV71 and viral RNA was first detected at 12 h post-infection (p.i.), whilst viral proteins were detected at 36 h p.i. EV71-infected astrocytes underwent apoptosis, in which cytochrome c was released from mitochondria to the cytosol and caspase-9 was activated. Interestingly, caspase-2 and -8 were not cleaved or activated during the infection, whilst a selective inhibitor of caspase-9, Z-LEHD-FMK, blocked the cleavage of caspase-3 and -7, indicating that only the mitochondria-mediated intrinsic apoptotic pathway was activated in EV71-infected astrocytes. EV71 infection also induced proinflammatory cytokines, including IL-6, IL-8, CCL5 and IFN-γ-inducible protein (IP)-10 in astrocytes, which may play a critical role in EV71-induced neuroinflammation and neurological complications. By using inhibitors of mitogen-activated protein kinases (MAPKs), we demonstrated that the induction of the cytokines was mainly regulated by the MAPK p38 signalling pathway as a significant reduction of the cytokines was observed when treated with p38 inhibitors. This study demonstrated that human astrocytes were susceptible to EV71, and the infection led to intrinsic apoptosis and induction of p38-regulated proinflammatory cytokines. These findings further our understanding of the neuropathogenesis in severe cases of EV71 infection.
Collapse
Affiliation(s)
- Chunyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Renmen Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Zerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China
| | - Yu Jin
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Carol J Cardona
- College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| | - Zheng Xing
- College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.,The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China
| |
Collapse
|
46
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
47
|
Saururus chinensis (Lour.) Baill blocks enterovirus 71 infection by hijacking MEK1-ERK signaling pathway. Antiviral Res 2015; 119:47-56. [PMID: 25912818 DOI: 10.1016/j.antiviral.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/23/2022]
Abstract
The aerial parts of Saururus chinensis (Lour.) Baill are a Chinese herbal medicine used for the treatment of edema and inflammatory diseases. However, the effect of this medicine on enterovirus 71 (EV71) infection has not been explored. Previous studies showed that MEK1-ERK signal pathway was required for efficient replication of EV71 infection and inhibition of this signal pathway has been shown to suppress virus infection. Here we show that the water extract of S. chinensis (Lour.) Baill (SCB) significantly blocks EV71 infection by inhibiting the activation of MEK1-ERK signal pathway with an IC50 of 8.9μg/mL. SCB at 30 and 60 μg/mL blocked EV71-induced cytopathic effect (CPE) and production of infectious virion by 1.9 and 5.1 logs, respectively. Virucidal assay suggested that SCB had no virucidal activity against EV71 and probably exerted its effect by targeting multiple steps in EV71 infection. Knockdown of MEK1 but not MEK2 blocked EV71 replication. And SCB treatment inhibited the activation of MEK1-ERK signal during EV71 infection. Furthermore, we found that rutin at 200 μM, one of the major components of SCB, significantly suppressed EV71 induced CPE and inhibited viral replication in a dose dependent manner. Taken together, SCB inhibited EV71 infection by hijacking MEK1-ERK signal pathway and rutin was the responsible antiviral component of SCB.
Collapse
|
48
|
Xun M, Ma CF, Du QL, Ji YH, Xu JR. Differential expression of miRNAs in enterovirus 71-infected cells. Virol J 2015; 12:56. [PMID: 25889836 PMCID: PMC4416288 DOI: 10.1186/s12985-015-0288-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Background Enterovirus 71 (EV71) is one of the major etiological pathogens of hand, foot and mouth disease (HFMD) and can cause severe cerebral and pulmonary complications and even fatality. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing various physiological and pathological processes. Increasing evidence suggests that miRNAs act as key effector molecules in the complicated pathogen-host interactions. However, the roles of miRNAs in EV71 infection and pathogenesis are not well understood. Methods To identify special miRNAs involved in EV71 infection, a microarray assay was performed to study the expression pattern of miRNAs in EV71-infected human rhabdomyosarcoma cells (RD cells) and uninfected RD cells. We further predicted the putative target genes for the dysregulated miRNAs using the online bioinformatic algorithms (TargetScan, miRanda and PicTar) and carried out functional annotation including GO enrichment and KEGG pathway analysis for miRNA predicted targets. Then, the results of microarray were further confirmed by quantitative RT-PCR. Results Totally, 45 differentially expressed miRNAs ware identified by microarray, among which 36 miRNAs were up-regulated and 9 were down-regulated. 7166 predicted target genes for the dysregulated miRNAs were revealed by using TargetScan in conjunction with miRanda and PicTar. The GO annotation suggested that predicted targets of miRNAs were enriched into the category of signal transduction, regulation of transcription, metabolic process, protein phosphorylation, apoptotic process and immune response. KEGG pathway analysis suggested that these predicted target genes were involved in many important pathways, mainly including endocytosis and focal adhesion, MAPK signaling pathway, hypertrophic cardiomyopathy, melanogenesis and ErbB signaling pathway. The expression levels of 8 most differentially up-regulated miRNAs and 3 most differentially down-regulated miRNAs were confirmed by qRT-PCR. The expressions of hsa-miR-4530, hsa-miR-4492, hsa-miR-6125, hsa-miR-494-3p, hsa-miR-638, hsa-miR-6743-5p, hsa-miR-4459 and hsa-miR-4443 detected by qRT-PCR were consistent with the microarray data. Conclusion These results might extend our understanding to the regulatory mechanism of miRNAs underlying the pathogenesis of EV71 infection, thus strengthening the preventative and therapeutic strategies of HFMD caused by EV71.
Collapse
Affiliation(s)
- Meng Xun
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chao-Feng Ma
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Quan-Li Du
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Yan-Hong Ji
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ji-Ru Xu
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
49
|
Wang H, Zhang D, Ge M, Li Z, Jiang J, Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression. Virol J 2015; 12:35. [PMID: 25890183 PMCID: PMC4351682 DOI: 10.1186/s12985-015-0264-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Background The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE2) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE2 expression. Methods The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Results Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0–6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE2 expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Conclusions Formononetin could inhibit EV71-induced COX-2 expression and PGE2 production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Dajun Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Miao Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
50
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|