1
|
Yang M, Wang Y, Xiong X, Xie B, Liu J, Yin J, Zi L, Wang X, Tang Y, Huang C, Zhao Q. SK4 calcium-activated potassium channels activated by sympathetic nerves enhances atrial fibrillation vulnerability in a canine model of acute stroke. Heliyon 2020; 6:e03928. [PMID: 32420493 PMCID: PMC7215192 DOI: 10.1016/j.heliyon.2020.e03928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background New-onset atrial fibrillation (AF) is common in patients with acute stroke (AS). Studies have shown that intermediate-conductance calcium-activated potassium channel channels (SK4) play an important role in cardiomyocyte automaticity. The aim of this study was to investigate the effects of SK4 on AF vulnerability in dogs with AS. Experimental Eighteen dogs were randomly divided into a control group, AS group and left stellate ganglion ablation (LSGA) group. In the control group, dogs received craniotomy without right middle cerebral artery occlusion (MCAO). AS dogs were established using a cerebral ischemic model with right MCAO. LSGA dogs underwent MCAO, and LSGA was performed. Results Three days later, the dispersion of the effective refractory period (dERP) and AF vulnerability in the AS group were significantly increased compared with those in the control group and LSGA group. However, no significant difference in dERP and AF vulnerability was found between the control group and the LSGA group. The SK4 inhibitor (TRAM-34) completely inhibited the inducibility of AF in AS dogs. SK4 expression and levels of noradrenaline (NE), β1-AR, p38 and c-Fos in the atrium were higher in the AS dogs than in the control group or LSGA group. However, no significant difference in SK4 expression or levels of NE, β1-AR, p38 and c-Fos in the left atrium was observed between the control group and LSGA group. Conclusion SK4 plays a key role in AF vulnerability in a canine model with AS. The effects of LSGA on AF vulnerability were associated with the p38 signaling pathways.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Corresponding author.
| |
Collapse
|
2
|
Gao MH, Lai NC, Giamouridis D, Kim YC, Tan Z, Guo T, Dillmann WH, Suarez J, Hammond HK. Cardiac-Directed Expression of Adenylyl Cyclase Catalytic Domain Reverses Cardiac Dysfunction Caused by Sustained Beta-Adrenergic Receptor Stimulation. ACTA ACUST UNITED AC 2016; 1:617-629. [PMID: 28670631 PMCID: PMC5490496 DOI: 10.1016/j.jacbts.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiac-targeted expression of C1C2 reduces cAMP production yet mice maintain normal cardiac function through increased Ca2+ handling. Sustained isoproterenol infusion reduces heart function in normal mice, but improves heart function in mice with increased cardiac C1C2 expression. Reduced cardiac cAMP generation and resistance to catecholamine cardiomyopathy are attractive features of this potential heart failure therapeutic. Removing the large transmembrane domains of AC6 and fusing the two intracellular domains provides a small molecule, C1C2, that replicates many of the beneficial effects of AC6, but is sufficiently small to be expressed in an AAV vector for gene transfer.
Transgenic mice with cardiac-directed C1C2, a fusion protein of the intracellular C1 and C2 segments of adenylyl cyclase type 6, had normal left ventricular (LV) function, but diminished cAMP generation. Cardiac myocytes from C1C2 mice showed increased Ca2+ release. Mice underwent continuous isoproterenol infusion to stress the heart. In C1C2 mice, sustained isoproterenol infusion increased rather than decreased LV function. LV SERCA2a and Ca2+ release were increased. Reduced cAMP generation and resistance to catecholamine cardiomyopathy are attractive features of this potential heart failure therapeutic.
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - N Chin Lai
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Dimosthenis Giamouridis
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Young Chul Kim
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Zhen Tan
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Tracy Guo
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Wolfgang H Dillmann
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - Jorge Suarez
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| | - H Kirk Hammond
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego
| |
Collapse
|
3
|
Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Arch 2014; 466:1163-75. [PMID: 24756197 DOI: 10.1007/s00424-014-1515-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
Cyclic AMP regulates a multitude of cellular responses and orchestrates a network of intracellular events. In the heart, cAMP is the main second messenger of the β-adrenergic receptor (β-AR) pathway producing positive chronotropic, inotropic, and lusitropic effects during sympathetic stimulation. Whereas short-term stimulation of β-AR/cAMP is beneficial for the heart, chronic activation of this pathway triggers pathological cardiac remodeling, which may ultimately lead to heart failure (HF). Cyclic AMP is controlled by two families of enzymes with opposite actions: adenylyl cyclases, which control cAMP production and phosphodiesterases, which control its degradation. The large number of families and isoforms of these enzymes, their different localization within the cell, and their organization in macromolecular complexes leads to a high level of compartmentation, both in space and time, of cAMP signaling in cardiac myocytes. Here, we review the expression level, molecular characteristics, functional properties, and roles of the different adenylyl cyclase and phosphodiesterase families expressed in heart muscle and the changes that occur in cardiac hypertrophy and failure.
Collapse
|
4
|
Kairouz V, Lipskaia L, Hajjar RJ, Chemaly ER. Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann N Y Acad Sci 2012; 1254:42-50. [PMID: 22548568 DOI: 10.1111/j.1749-6632.2012.06520.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.
Collapse
Affiliation(s)
- Victor Kairouz
- Department of Internal Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Erie County Medical Center, Buffalo, New York, USA
| | | | | | | |
Collapse
|
7
|
Gao MH, Tang T, Lai NC, Miyanohara A, Guo T, Tang R, Firth AL, Yuan JX, Hammond HK. Beneficial effects of adenylyl cyclase type 6 (AC6) expression persist using a catalytically inactive AC6 mutant. Mol Pharmacol 2010; 79:381-8. [PMID: 21127130 DOI: 10.1124/mol.110.067298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cardiac-directed expression of AC6 has pronounced favorable effects on cardiac function possibly not linked with cAMP production. To determine rigorously whether cAMP generation is required for the beneficial effects of increased AC6 expression, we generated a catalytically inactive AC6 mutant (AC6mut) that has markedly diminished cAMP generating capacity by replacing aspartic acid with alanine at position 426 in the C1 domain (catalytic region) of AC6. Gene transfer of AC6 or AC6mut (adenovirus-mediated) in adult rat cardiac myocytes resulted in similar expression levels and intracellular distribution, but AC6mut expression was associated with marked reduction in cAMP production. Despite marked reduction in cAMP generation, AC6mut influenced intracellular signaling events similarly to that observed after expression of catalytically intact AC6. For example, both AC6 and AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expression of cardiac ankyrin repeat protein (p < 0.01), and phospholamban (p < 0.05). AC6mut expression, similar to its catalytically intact cohort, was associated with increased Ca2+ transients in cardiac myocytes after isoproterenol stimulation. Many of the biological effects of AC6 expression are replicated by a catalytically inactive AC6 mutant, indicating that the mechanisms for these effects do not require increased cAMP generation.
Collapse
Affiliation(s)
- Mei Hua Gao
- Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|