1
|
Moradian H, Roch T, Anthofer L, Lendlein A, Gossen M. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:854-869. [PMID: 35141046 PMCID: PMC8807976 DOI: 10.1016/j.omtn.2022.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Toralf Roch
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Larissa Anthofer
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Corresponding author Dr. Manfred Gossen, Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
2
|
Supinski GS, Netzel PF, Westgate PM, Schroder EA, Wang L, Callahan LA. A randomized controlled trial to determine whether beta-hydroxy-beta-methylbutyrate and/or eicosapentaenoic acid improves diaphragm and quadriceps strength in critically Ill mechanically ventilated patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:308. [PMID: 34446067 PMCID: PMC8390080 DOI: 10.1186/s13054-021-03737-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023]
Abstract
Background Intensive care unit acquired weakness is a serious problem, contributing to respiratory failure and reductions in ambulation. Currently, there is no pharmacological therapy for this condition. Studies indicate, however, that both beta-hydroxy-beta-methylbutyrate (HMB) and eicosapentaenoic acid (EPA) increase muscle function in patients with cancer and in older adults. The purpose of this study was to determine whether HMB and/or EPA administration would increase diaphragm and quadriceps strength in mechanically ventilated patients. Methods Studies were performed on 83 mechanically ventilated patients who were recruited from the Medical Intensive Care Units at the University of Kentucky. Diaphragm strength was assessed as the trans-diaphragmatic pressure generated by supramaximal magnetic phrenic nerve stimulation (PdiTw). Quadriceps strength was assessed as leg force generated by supramaximal magnetic femoral nerve stimulation (QuadTw). Diaphragm and quadriceps thickness were assessed by ultrasound. Baseline measurements of muscle strength and size were performed, and patients were then randomized to one of four treatment groups (placebo, HMB 3 gm/day, EPA 2 gm/day and HMB plus EPA). Strength and size measurements were repeated 11 days after study entry. ANCOVA statistical testing was used to compare variables across the four experimental groups. Results Treatments failed to increase the strength and thickness of either the diaphragm or quadriceps when compared to placebo. In addition, treatments also failed to decrease the duration of mechanical ventilation after study entry. Conclusions These results indicate that a 10-day course of HMB and/or EPA does not improve skeletal muscle strength in critically ill mechanically ventilated patients. These findings also confirm previous reports that diaphragm and leg strength in these patients are profoundly low. Additional studies will be needed to examine the effects of other anabolic agents and innovative forms of physical therapy. Trial registration: ClinicalTrials.gov, NCT01270516. Registered 5 January 2011, https://clinicaltrials.gov/ct2/show/NCT01270516?term=Supinski&draw=2&rank=4. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03737-9.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Paul F Netzel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Philip M Westgate
- Department of Biostatistics, College of Public Health, University of Kentucky, 725 Rose Street, Lexington, KY, MDS 205B40536-0082, USA
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA.
| |
Collapse
|
3
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
4
|
Peixoto da Silva S, Santos JMO, Costa E Silva MP, Gil da Costa RM, Medeiros R. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle 2020; 11:619-635. [PMID: 32142217 PMCID: PMC7296264 DOI: 10.1002/jcsm.12528] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass, along with adipose tissue wasting, systemic inflammation and other metabolic abnormalities leading to functional impairment. Cancer cachexia has long been recognized as a direct cause of complications in cancer patients, reducing quality of life and worsening disease outcomes. Some related conditions, like sarcopenia (age-related muscle wasting), anorexia (appetite loss) and asthenia (reduced muscular strength and fatigue), share some key features with cancer cachexia, such as weakness and systemic inflammation. Understanding the interplay and the differences between these conditions is critical to advance basic and translational research in this field, improving the accuracy of diagnosis and contributing to finally achieve effective therapies for affected patients.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Maria Paula Costa E Silva
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Palliative Care Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Postgraduate Programme in Adult Health (PPGSAD) and Tumour Biobank, Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal.,Research Department, Portuguese League Against Cancer - Regional Nucleus of the North (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Porto, Portugal
| |
Collapse
|
5
|
Eo H, Reed CH, Valentine RJ. Imoxin prevents dexamethasone-induced promotion of muscle-specific E3 ubiquitin ligases and stimulates anabolic signaling in C2C12 myotubes. Biomed Pharmacother 2020; 128:110238. [PMID: 32450522 DOI: 10.1016/j.biopha.2020.110238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/26/2022] Open
Abstract
Muscle atrophy is the loss of skeletal muscle mass during several pathological conditions such as long-term fasting, aging, cancer, diabetes, sepsis and immune disorders. Glucocorticoids are known to trigger skeletal muscle atrophy. Dexamethasone (DEX), a synthetic glucocorticoid, induces skeletal muscle atrophy by suppression of protein synthesis and promotion of protein degradation. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) plays a significant role in mediating lipopolysaccharide-induced inflammation. However, pathological roles of PKR in muscle atrophy are not fully understood. The current study aimed to investigate the effect of imoxin, a PKR inhibitor, on DEX-induced muscle atrophy in C2C12 myotubes. Myotubes were incubated with imoxin at different concentrations with or without 5 μM DEX for 24 h. In the current study, imoxin treatment significantly reduced protein levels of MuRF1 and MAFbx induced by DEX by 88 ± 2% and MAFbx by 99 ± 0%, respectively. Moreover, 5 μM imoxin treatment reduced protein ubiquitination by 42 ± 4% and protein content of nuclear FoxO3α (77 ± 4%) in presence of DEX. Furthermore, 5 μM imoxin treatment stimulated Akt phosphorylation (195 ± 5%), mTOR phosphorylation (171 ± 21 %) and p70S6K1 phosphorylation (314 ± 31 %) under DEX-treated condition even though DEX treatment did not suppressed Akt/mTOR/p70S6K1 axis. These findings suggest that imoxin may protect against DEX-induced skeletal muscle atrophy by alleviating muscle specific E3 ubiquitin ligases and imoxin alone may promote protein synthesis via Akt/mTOR/S6K1 axis in muscle cells.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States
| | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States; Department of Food Science and Human Nutrition, Ames, Iowa, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States.
| |
Collapse
|
6
|
Valentine RJ, Jefferson MA, Kohut ML, Eo H. Imoxin attenuates LPS-induced inflammation and MuRF1 expression in mouse skeletal muscle. Physiol Rep 2018; 6:e13941. [PMID: 30548229 PMCID: PMC6286898 DOI: 10.14814/phy2.13941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase (PKR) contributes to inflammatory cytokine expression and disease pathogenesis in many conditions. Limited data are available on the efficacy of the PKR inhibitor imoxin to prevent lipopolysaccharide (LPS)-induced inflammation in skeletal muscle in vivo. The aim of this study was to evaluate the effect of imoxin, a PKR inhibitor, on inflammatory and atrophy signaling in skeletal muscle in response to an acute inflammatory insult with LPS. Six-week old C57BL/6J mice received vehicle (saline) or 0.5 mg/kg imoxin 24 and 2 h prior to induction of inflammation via 1 mg/kg LPS. Gastrocnemius muscles were collected 24 h post-LPS and mRNA and protein expression were assessed. LPS lead to a loss of body weight, which was similar in Imoxin+LPS. There were no differences in muscle weight among groups. LPS increased gastrocnemius mRNA expression of TNF-α and IL-1β, and protein levels of NLRP3, all of which were attenuated by imoxin. Similarly, IL-6 mRNA and IL-1β protein were suppressed in Imoxin+LPS compared to LPS alone. LPS increased mRNA of the atrogenes, MuRF1 and MAFbx, and imoxin attenuated the LPS-induced increase in MuRF1 mRNA, and lowered MuRF1 protein. Imoxin+LPS increased p-Akt compared to saline or LPS, whereas p-mTOR was unaltered. FoxO1 was upregulated and p-FoxO1/FoxO1 reduced by LPS, both of which were prevented by imoxin. Both LPS and Imoxin+LPS had diminished p-FoxO3/FoxO3 compared to control. These results demonstrate the potential anti-inflammatory and anti-atrophy effects of imoxin on skeletal muscle in vivo.
Collapse
Affiliation(s)
- Rudy J. Valentine
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Graduate Program in Nutritional SciencesIowa State UniversityAmesIowa
- Immunobiology Interdepartmental Graduate ProgramIowa State UniversityAmesIowa
| | - Matthew A. Jefferson
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Neuroscience Graduate ProgramIowa State UniversityAmesIowa
| | - Marian L. Kohut
- Department of KinesiologyIowa State UniversityAmesIowa
- Immunobiology Interdepartmental Graduate ProgramIowa State UniversityAmesIowa
| | - Hyeyoon Eo
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Graduate Program in Nutritional SciencesIowa State UniversityAmesIowa
| |
Collapse
|
7
|
Cruz B, Oliveira A, Gomes-Marcondes MCC. L-leucine dietary supplementation modulates muscle protein degradation and increases pro-inflammatory cytokines in tumour-bearing rats. Cytokine 2017; 96:253-260. [PMID: 28494385 DOI: 10.1016/j.cyto.2017.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
Cancer cachexia is characterised by involuntary weight loss associated with systemic inflammation and metabolic changes. Studies aimed at maintaining lean body mass in cachectic tumour-bearing hosts have made important contributions reducing the number of deaths and improving the quality of life. In recent years, leucine has demonstrated effective action in maintaining lean body mass by decreasing muscle protein degradation. Currently, there is a growing need to understand how leucine stimulates protein synthesis and acts protectively in a cachectic organism. Thus, this study aimed to assess the effects of a leucine-rich diet on protein degradation signalling in muscle over the course of tumour growth. Animals were distributed into four experimental groups, which did or did not receive 2×106 viable Walker-tumour cells. Some were fed a leucine-rich diet, and the groups were subsequently sacrificed at three different time points of tumour evolution (7th, 14th, and 21st days). Protein degradation signals, as indicated by ubiquitin-proteasome subunits (11S, 19S, and 20S) and pro- and anti-inflammatory cytokines, were analysed in all experimental groups. In tumour-bearing animals without nutritional supplementation (W7, W14, and W21 groups), we observed that the tumour growth promoted a concurrent decrease in muscle protein, a sharp increase in pro-inflammatory cytokines (TNFα, IL-6, and IFNγ), and a progressive increase in proteasome subunits (19S and 20S). Thus, the leucine-supplemented tumour-bearing groups showed improvements in muscle mass and protein content, and in this specific situation, the leucine-rich diet led to an increase on the day in cytokine profile and proteasome subunits mainly on the 14th day, which subsequently had a modulating effect on tumour growth on the 21st day. These results indicate that the presence of leucine in the diet may modulate important aspects of the proteasomal pathway in cancer cachexia and may prevent muscle wasting due to the decrease in the cachexia index.
Collapse
Affiliation(s)
- Bread Cruz
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, UNICAMP, CP 6109, 13083862 Campinas, Sao Paulo, Brazil
| | - André Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, UNICAMP, CP 6109, 13083862 Campinas, Sao Paulo, Brazil
| | - Maria Cristina Cintra Gomes-Marcondes
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, UNICAMP, CP 6109, 13083862 Campinas, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 2015; 226:R29-43. [PMID: 26112046 DOI: 10.1530/joe-15-0170] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment.
Collapse
Affiliation(s)
- Maria Carolina S Mendes
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Gustavo D Pimentel
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Felipe O Costa
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - José B C Carvalheira
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
9
|
Mirza KA, Tisdale MJ. Functional identity of receptors for proteolysis-inducing factor on human and murine skeletal muscle. Br J Cancer 2014; 111:903-8. [PMID: 25101564 PMCID: PMC4150279 DOI: 10.1038/bjc.2014.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 01/16/2023] Open
Abstract
Background: Cachexia in both mice and humans is associated with tumour production of a sulphated glycoprotein called proteolysis-inducing factor (PIF). In mice PIF binds with high affinity to a surface receptor in skeletal muscle, but little is known about the human receptor. This study compares the human PIF receptor with the murine. Methods: Human PIF was isolated from the G361 melanoma and murine PIF from the MAC16 colon adenocarcinoma. The human PIF receptor was isolated from human skeletal muscle myotubes. Protein synthesis and degradation induced by human and murine PIF was studied in human and murine skeletal muscle myotubes. Results: Both the human and murine PIF receptors showed the same immunoreactivity and Mr 40 000. Both murine and human PIF inhibited total protein synthesis and stimulated protein degradation in human and murine myotubes to about the same extent, and this was attenuated by a rabbit polyclonal antibody to the murine PIF receptor, but not by a non-specific rabbit antibody. Both murine and human PIF increased the activity of the ubiquitin–proteasome pathway in both human and murine myotubes, as evidenced by an increased ‘chymotrypsin-like' enzyme activity, protein expression of the 20S and 19S proteasome subunits, and increased expression of the ubiquitin ligases MuRF1 and MAFbx, and this was also attenuated by the anti-mouse PIF receptor antibody. Conclusions: These results suggest that the murine and human PIF receptors are identical.
Collapse
Affiliation(s)
- K A Mirza
- Department of Nutritional Biomedicine, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - M J Tisdale
- Department of Nutritional Biomedicine, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
10
|
Mirza KA, Tisdale MJ. Role of Ca2+ in proteolysis-inducing factor (PIF)-induced atrophy of skeletal muscle. Cell Signal 2012; 24:2118-22. [PMID: 22820507 DOI: 10.1016/j.cellsig.2012.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/22/2022]
Abstract
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C(2)C(12) murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca(2+)(i), which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) also induced a rise in Ca(2+)(i), but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca(2+)(i) induced by PIF and AngII was completely attenuated by the Zn(2+) chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn(2+). The Ca(2+)(i) rise induced by PIF was independent of the presence of extracellular Ca(2+), and attenuated by the Ca(2+) pump inhibitor thapsigargin, suggesting that the Ca(2+)(i) rise was due to release from intracellular stores. This rise in Ca(2+)(i) induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca(2+)(i), which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Collapse
Affiliation(s)
- K A Mirza
- Nutritional Biomedicine, School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | |
Collapse
|
11
|
Katta A, Kakarla SK, Manne NDPK, Wu M, Kundla S, Kolli MB, Nalabotu SK, Blough ER. Diminished muscle growth in the obese Zucker rat following overload is associated with hyperphosphorylation of AMPK and dsRNA-dependent protein kinase. J Appl Physiol (1985) 2012; 113:377-84. [PMID: 22653991 DOI: 10.1152/japplphysiol.00397.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous data have suggested that insulin-resistant skeletal muscle may exhibit a diminished ability to undergo hypertrophy and that this result may be mediated, at least in part, from decrements in mammalian target of rapamycin (mTOR) signaling (Katta A, Kundla S, Kakarla SK, Wu M, Fannin J, Paturi S, Liu H, Addagarla HS, Blough ER. Am J Physiol Regul Integr Comp Physiol 299: R1666-R1675, 2010). Herein, we attempt to extend these observations by determining if this attenuation in muscle growth is associated with alterations in AMP-activated protein kinase (AMPK) signaling, an upstream mediator of mTOR, and changes in the activation of dsRNA-dependent protein kinase (PKR), which functions as an inhibitor of protein synthesis and potential mediator of protein degradation. Compared with that observed in lean Zucker (LZ) rats, the phosphorylation of AMPKα at Thr172 was higher after 3 wk of overload in the insulin-resistant obese Zucker (OZ) soleus (P < 0.05). This change in AMPKα phosphorylation was accompanied by increases in the amount of phosphorylated PKR (Thr446), elevations in the PKR-dependent phosphorylation of eukaryotic initiation factor (eIF)-2α (Ser51), augmented p38 MAP kinase (Thr180/Tyr182) phosphorylation, and increases in the amount of protein ubiquitination (P < 0.05). Taken together, these results suggest that the diminished hypertrophic response we observe in the OZ rat may be mediated, at least in part, by the hyperactivation of AMPK- and PKR-related signaling.
Collapse
Affiliation(s)
- Anjaiah Katta
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755-1090, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Graham KF. Dietary salt restriction and chronic fatigue syndrome: a hypothesis. Med Hypotheses 2011; 77:462-3. [PMID: 21680102 DOI: 10.1016/j.mehy.2011.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/13/2011] [Accepted: 05/26/2011] [Indexed: 11/30/2022]
|