1
|
Patibandla C, van Aalten L, Dinkova-Kostova AT, Honda T, Cuadrado A, Fernández-Ginés R, McNeilly AD, Hayes JD, Cantley J, Sutherland C. Inhibition of glycogen synthase kinase-3 enhances NRF2 protein stability, nuclear localisation and target gene transcription in pancreatic beta cells. Redox Biol 2024; 71:103117. [PMID: 38479223 PMCID: PMC10950707 DOI: 10.1016/j.redox.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances β-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or β-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the β-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and β-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or β-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.
Collapse
Affiliation(s)
- Chinmai Patibandla
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | - Lidy van Aalten
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alison D McNeilly
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - John D Hayes
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - James Cantley
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Calum Sutherland
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
2
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
3
|
Pickering S, Sumner J, Kerridge C, Perera M, Neil S. Differential dysregulation of β-TrCP1 and -2 by HIV-1 Vpu leads to inhibition of canonical and non-canonical NF-κB pathways in infected cells. mBio 2023; 14:e0329322. [PMID: 37341489 PMCID: PMC10470808 DOI: 10.1128/mbio.03293-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/03/2023] [Indexed: 06/22/2023] Open
Abstract
The HIV-1 Vpu protein is expressed late in the virus lifecycle to promote infectious virus production and avoid innate and adaptive immunity. This includes the inhibition of the NF-κB pathway which, when activated, leads to the induction of inflammatory responses and the promotion of antiviral immunity. Here we demonstrate that Vpu can inhibit both canonical and non-canonical NF-κB pathways, through the direct inhibition of the F-box protein β-TrCP, the substrate recognition portion of the Skp1-Cul1-F-box (SCF)β-TrCP ubiquitin ligase complex. There are two paralogues of β-TrCP (β-TrCP1/BTRC and β-TrCP2/FBXW11), encoded on different chromosomes, which appear to be functionally redundant. Vpu, however, is one of the few β-TrCP substrates to differentiate between the two paralogues. We have found that patient-derived alleles of Vpu, unlike those from lab-adapted viruses, trigger the degradation of β-TrCP1 while co-opting its paralogue β-TrCP2 for the degradation of cellular targets of Vpu, such as CD4. The potency of this dual inhibition correlates with stabilization of the classical IκBα and the phosphorylated precursors of the mature DNA-binding subunits of canonical and non-canonical NF-κB pathways, p105/NFκB1 and p100/NFκB2, in HIV-1 infected CD4+ T cells. Both precursors act as alternative IκBs in their own right, thus reinforcing NF-κB inhibition at steady state and upon activation with either selective canonical or non-canonical NF-κB stimuli. These data reveal the complex regulation of NF-κB late in the viral replication cycle, with consequences for both the pathogenesis of HIV/AIDS and the use of NF-κB-modulating drugs in HIV cure strategies. IMPORTANCE The NF-κB pathway regulates host responses to infection and is a common target of viral antagonism. The HIV-1 Vpu protein inhibits NF-κB signaling late in the virus lifecycle, by binding and inhibiting β-TrCP, the substrate recognition portion of the ubiquitin ligase responsible for inducing IκB degradation. Here we demonstrate that Vpu simultaneously inhibits and exploits the two different paralogues of β-TrCP by triggering the degradation of β-TrCP1 and co-opting β-TrCP2 for the destruction of its cellular targets. In so doing, it has a potent inhibitory effect on both the canonical and non-canonical NF-κB pathways. This effect has been underestimated in previous mechanistic studies due to the use of Vpu proteins from lab-adapted viruses. Our findings reveal previously unappreciated differences in the β-TrCP paralogues, revealing functional insights into the regulation of these proteins. This study also raises important implications for the role of NF-κB inhibition in the immunopathogenesis of HIV/AIDS and the way that this may impact on HIV latency reversal strategies based on the activation of the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jonathan Sumner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Claire Kerridge
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Marianne Perera
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Stuart Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
5
|
The β-TrCP-Mediated Pathway Cooperates with the Keap1-Mediated Pathway in Nrf2 Degradation In Vivo. Mol Cell Biol 2022; 42:e0056321. [PMID: 35674451 DOI: 10.1128/mcb.00563-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nrf2 activates cytoprotective gene expression, and Nrf2 activity is regulated through at least two protein degradation pathways: the Keap1-mediated and β-TrCP-mediated pathways. To address the relative contributions of these pathways, we generated knock-in mouse lines expressing an Nrf2SA mutant that harbored two substitution mutations of serine residues interacting with β-TrCP. The homozygous (Nrf2SA/SA) mice grew normally, with Nrf2 levels comparable to those of wild-type (WT) mice under unstressed conditions. However, when Keap1 activity was suppressed, high levels of Nrf2 accumulated in Nrf2SA/SA macrophages compared with that in WT macrophages. We crossed Nrf2SA/SA mice with mice in which Keap1 was knocked down to two different levels. We found that the Nrf2SA/SA mutation induced higher Nrf2 activity when the Keap1 level was strongly reduced, and these mice showed severe growth retardation. However, activation and growth retardation were not evident when Keap1 was moderately suppressed. These increases in Nrf2 activity induced by the Nrf2SA mutation caused severe hyperplasia and hyperkeratosis in the esophageal epithelium but did not cause abnormalities in the other tissues/organs examined. These results indicate that the β-TrCP-mediated pathway cooperates with the Keap1-mediated pathway to regulate Nrf2 activity, which is apparent when the Keap1-mediated pathway is profoundly suppressed.
Collapse
|
6
|
Lim YX, Lin H, Chu T, Lim YP. WBP2 promotes BTRC mRNA stability to drive migration and invasion in triple-negative breast cancer via NF-κB activation. Mol Oncol 2021; 16:422-446. [PMID: 34197030 PMCID: PMC8763649 DOI: 10.1002/1878-0261.13048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
WW‐domain‐binding protein 2 (WBP2) is an oncogene that drives breast carcinogenesis through regulating Wnt, estrogen receptor (ER), and Hippo signaling. Recent studies have identified neoteric modes of action of WBP2 other than its widely recognized function as a transcriptional coactivator. Here, we identified a previously unexplored role of WBP2 in inflammatory signaling in breast cancer via an integrated proteogenomic analysis of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA BRCA) dataset. WBP2 was shown to enhance the migration and invasion in triple‐negative breast cancer (TNBC) cells especially under tumor necrosis factor alpha (TNF‐α) stimulation. Molecularly, WBP2 potentiates TNF‐α‐induced nuclear factor kappa B (NF‐κB) transcriptional activity and nuclear localization through aggrandizing ubiquitin‐mediated proteasomal degradation of its upstream inhibitor, NF‐κB inhibitor alpha (NFKBIA; also known as IκBα). We further demonstrate that WBP2 induces mRNA stability of beta‐transducin repeat‐containing E3 ubiquitin protein ligase (BTRC), which targets IκBα for ubiquitination and degradation. Disruption of IκBα rescued the impaired migratory and invasive phenotypes in WBP2‐silenced cells, while loss of BTRC ameliorated WBP2‐driven migration and invasion. Clinically, the WBP2‐BTRC‐IκBα signaling axis correlates with poorer prognosis in breast cancer patients. Our findings reveal a pivotal mechanism of WBP2 in modulating BTRC‐IκBα‐NF‐κB pathway to promote TNBC aggressiveness.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tinghine Chu
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University Health System, Singapore City, Singapore
| | - Yoon Pin Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National University Cancer Institute, Singapore City, Singapore
| |
Collapse
|
7
|
Lee EJ, Cho M, Rho SB, Park J, Chae DA, Nguyen QTT. β-TrCP1-variant 4, a novel splice variant of β-TrCP1, is a negative regulator of β-TrCP1-variant 1 in β-catenin degradation. Biochem Biophys Res Commun 2021; 542:9-16. [PMID: 33482471 DOI: 10.1016/j.bbrc.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
β-transducin repeats-containing protein-1 (β-TrCP1) serves as the substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligases, which specifically ubiquitinate phosphorylated substrates. Three variants of β-TrCP1 are known and act as homodimer or heterodimer complexes. Here, we identified a novel full-sequenced variant, β-TrCP1-variant 4, which harbours exon II instead of exon III of variant 1, with no change in the open reading frame. The expression of β-TrCP1-variant 4 is lower than that of variant 1 or 2 in ovarian cancer cell lines, whereas it is abundantly expressed in normal and cancerous ovarian tissues. Moreover, β-TrCP1-variant 2 was aberrantly expressed more than variant 1 in ovarian cancer tissues whereas variant 1 was expressed more in normal tissues. Similar to variants 1 and 2, β-TrCP1-variant 4 directly interacts with β-catenin, one of the substrates of SCFβ-TrCP E3 ubiquitin ligase and down-regulates the transcriptional activity and protein expression of β-catenin with a significantly weaker effect than that by variants 1 and 2. However, the co-expression of β-TrCP1-variant 4 with variant 1 in same proportion has no effect, whereas other combinations effectively down-regulate the activity of β-catenin, indicating that the heterodimer of variants 1 and 4 has no function. Thus, β-TrCP1-variant 4 could play a critical role in SCFβ-TrCP E3 ligase-mediated ubiquitination by acting as a negative regulator of β-TrCP1-variant 1.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Minji Cho
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Republic of Korea.
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea.
| | - Dhan-Ah Chae
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Que Thanh Thanh Nguyen
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Kostopoulou E, Rojas Gil AP, Spiliotis BE. Investigation of the role of β-TrCP in growth hormone transduction defect (GHTD). Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0029. [PMID: 32114520 DOI: 10.1515/hmbci-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/16/2019] [Indexed: 11/15/2022]
Abstract
Background Growth hormone(GH) and epidermal growth factor (EGF) stimulate cell growth and differentiation, and crosstalking between their signaling pathways is important for normal cellular development. Growth hormone transduction defect (GHTD) is characterized by excessive GH receptor (GHR) degradation, due to over-expression of the E3 ubiquitin ligase, cytokine inducible SH2-containing protein (CIS). GH induction of GHTD fibroblasts after silencing of messenger RNA (mRNA) CIS (siCIS) or with higher doses of GH restores normal GH signaling. β-Transducing-repeat-containing protein (β-TrCP), another E3 ubiquitin ligase, also plays a role in GHR endocytosis. We studied the role of β-TrCP in the regulation of the GH/GHR and EGF/EGF receptor (EGFR) pathways in normal and GHTD fibroblasts. Materials and methods Fibroblast cultures were developed from gingival biopsies of a GHTD (P) and a control child (C). Protein expression and cellular localization of β-TrCP were studied by Western immunoblotting and immunofluorescence, respectively, after: (1) GH 200 μg/L human GH (hGH) induction, either with or without silence CIS (siCIS), and (2) inductions with 200 μg/L GH or 1000 μg/L GH or 50 ng/mL EGF. Results After induction with: (1) GH200/siCIS, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in the patient, (2) GH200 in the control and GH1000 in the patient, the protein and cytoplasmic-membrane localization of β-TrCP were increased and (3) EGF, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in both the control and the patient. Conclusions (1) β-TrCP appears to be part of the negative regulatory mechanism of the GH/GHR and EGF/EGFR pathways. (2) There appears to be a negative correlation between β-TrCP and CIS. (3) In the control and GHTD patient, β-TrCP increases when CIS is suppressed, possibly as a compensatory inhibitor of the GH/GHR pathway.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece, Phone: +30 6972070117, Fax: +30 2610993462
| | - Andrea Paola Rojas Gil
- Faculty of Human Movement and Quality of Life Sciences Department of Nursing, University of Peloponnese, Sparta, Greece
| | - Bessie E Spiliotis
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece
| |
Collapse
|
9
|
Two major alternative splice variants of beta-TrCP1 interact with CENP-W with different binding preferences. Genes Genomics 2018; 41:167-174. [DOI: 10.1007/s13258-018-0748-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
|
10
|
Cheon Y, Lee S. CENP-W inhibits CDC25A degradation by destabilizing the SCF β-TrCP-1 complex at G 2/M. FASEB J 2018; 32:fj201701358RRR. [PMID: 29863914 DOI: 10.1096/fj.201701358rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Skp, Cullin, F-box (SCF)β-TrCP-1 ubiquitin ligases play a central role in cell cycle regulation and tumorigenesis via proteolytic cleavage of many essential cell cycle regulators. In this study, we propose that centromere protein (CENP)-W, a newly identified kinetochore component, is a novel negative regulator of the SCFβ-TrCP-1 complex. CENP-W interacts with Cullin (CUL)-1 and β-Transducin repeat-containing protein (β-TrCP)-1 through highly overlapped binding sites with S-phase kinase-associated protein (SKP)-1. CENP-W is incorporated into the SCFβ-TrCP-1 complex to promote complex disassembly. Unlike other known regulators that increase SCFβ-TrCP-1 ubiquitin ligase activity by promoting complex reassociation, CENP-W-mediated complex disorganization induced β-TrCP1 degradation and consequently decreased its activity. The association between CENP-W and the SCFβ-TrCP-1 complex was prominent during the G2/M transition in the nucleus. Especially, CENP-W knockdown decreased the cell division cycle-25A protein level, leading to a delay in mitotic progression. We propose that CENP-W participates in cell cycle regulation by modulating SCFβ-TrCP-1 ubiquitin ligase activity.-Cheon, Y., Lee, S. CENP-W inhibits CDC25A degradation by destabilizing the SCFβ-TrCP-1 complex at G2/M.
Collapse
Affiliation(s)
- Yeongmi Cheon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
11
|
Ben Younes K, Body S, Costé É, Viailly PJ, Miloudi H, Coudre C, Jardin F, Ben Aissa-Fennira F, Sola B. A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. BMC Cancer 2017; 17:538. [PMID: 28797244 PMCID: PMC5553741 DOI: 10.1186/s12885-017-3530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell hemopathy characterized by the t(11;14) translocation and the aberrant overexpression of cyclin D1. This results in an unrestrained cell proliferation. Other genetic alterations are common in MCL cells such as SOX11 expression, mutations of ATM and/or TP53 genes, activation of the NF-κB signaling pathway and NOTCH receptors. These alterations lead to the deregulation of the apoptotic machinery and resistance to drugs. We observed that among a panel of MCL cell lines, REC1 cells were resistant towards genotoxic stress. We studied the molecular basis of this resistance. Methods We analyzed the cell response regarding apoptosis, senescence, cell cycle arrest, DNA damage response and finally the 26S proteasome activity following a genotoxic treatment that causes double strand DNA breaks. Results MCL cell lines displayed various sensitivity/resistance towards genotoxic stress and, in particular, REC1 cells did not enter apoptosis or senescence after an etoposide treatment. Moreover, the G2/M cell cycle checkpoint was deficient in REC1 cells. We observed that three main actors of apoptosis, senescence and cell cycle regulation (cyclin D1, MCL1 and CDC25A) failed to be degraded by the proteasome machinery in REC1 cells. We ruled out a default of the βTrCP E3-ubiquitine ligase but detected a lowered 26S proteasome activity in REC1 cells compared to other cell lines. Conclusion The resistance of MCL cells to genotoxic stress correlates with a low 26S proteasome activity. This could represent a relevant biomarker for a subtype of MCL patients with a poor response to therapies and a high risk of relapse. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3530-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khaoula Ben Younes
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Simon Body
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Élodie Costé
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Pierre-Julien Viailly
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Hadjer Miloudi
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Clémence Coudre
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Fabrice Jardin
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Fatma Ben Aissa-Fennira
- Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Brigitte Sola
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France. .,MICAH, UFR Santé, CHU Côte de Nacre, 14032, Caen Cedex, France.
| |
Collapse
|
12
|
Ishimoto K, Hayase A, Kumagai F, Kawai M, Okuno H, Hino N, Okada Y, Kawamura T, Tanaka T, Hamakubo T, Sakai J, Kodama T, Tachibana K, Doi T. Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase. Biochem Biophys Res Commun 2017; 488:159-164. [PMID: 28483528 DOI: 10.1016/j.bbrc.2017.04.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes.
Collapse
Affiliation(s)
- Kenji Ishimoto
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ayaka Hayase
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumiko Kumagai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Megumi Kawai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroko Okuno
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobumasa Hino
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Okada
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Toshiya Tanaka
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Cheon Y, Jeon S, Lee S. Centromere protein W interacts with beta-transducin repeat-containing protein 1 and modulates its subcellular localization. FEBS Lett 2016; 590:4441-4452. [DOI: 10.1002/1873-3468.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yeongmi Cheon
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| | - Seyeong Jeon
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| |
Collapse
|
14
|
Guo W, You X, Xu D, Zhang Y, Wang Z, Man K, Wang Z, Chen Y. PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition and metastasis of gastric cancer cells. Carcinogenesis 2016; 37:397-407. [PMID: 26905590 DOI: 10.1093/carcin/bgw013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/16/2016] [Indexed: 01/06/2023] Open
Abstract
Twist1 is an essential transcription factor required to initiate epithelial-mesenchymal transition (EMT) and promote tumor metastasis. PAQR3 is a newly found tumor suppressor that is frequently downregulated in many types of human cancers. Downregulation of PAQR3 is associated with accelerated metastasis and poor prognosis of the patients with gastric cancers. In this study, we demonstrate that PAQR3 is actively involved in the degradation of Twist1 and whereby regulates EMT and metastasis of gastric cancer cells. PAQR3 overexpression reduces the protein level but not the mRNA level of Twist1. The protein stability and polyubiquitination of Twist1 are altered by PAQR3. PAQR3 forms a complex with Twist1 and BTRC, an E3 ubiquitin ligase. PAQR3 enhances the interaction between Twist1 and BTRC. Twist1 is mobilized from the nucleus to a proteasome-containing structure in the cytoplasm upon overexpression of PAQR3 and BTRC, which is required for PAQR3-induced degradation of Twist1. The Twist1 box domain of the Twist1 protein is required for the interaction of Twist1 with both PAQR3 and BTRC, indispensable for PAQR3-mediated degradation of Twist1. Both BTRC and Twist1 are required for the inhibitory effects of PAQR3 on migration and EMT phenotype of gastric cancers cells. Importantly, Twist1 is indispensable for the inhibitory effect of PAQR3 on metastasis of gastric cancer cells in vivo Collectively, these findings not only pinpoint that Twist1 mediates the modulatory function of PAQR3 on EMT and metastasis but also suggest that targeting Twist1 is a promising strategy to control metastasis of tumors with downregulation of PAQR3.
Collapse
Affiliation(s)
- Weiwei Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031 , China and
| | - Xue You
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031, China and.,School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Daqian Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031 , China and
| | - Yuxue Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031 , China and
| | - Zheng Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031 , China and
| | - Kaiyang Man
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031, China and.,School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Zhenzhen Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031 , China and
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, New Life Science Building, A2214, Shanghai 200031, China and.,School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China
| |
Collapse
|
15
|
Mudhasani R, Tran JP, Retterer C, Kota KP, Whitehouse CA, Bavari S. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase. PLoS Pathog 2016; 12:e1005437. [PMID: 26837067 PMCID: PMC4737497 DOI: 10.1371/journal.ppat.1005437] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection. Rift Valley fever (RVF) is a severe disease caused by infection with the Rift Valley fever virus (RVFV) that affects humans and livestock and occurs in large epidemics. Currently there are no FDA-approved drugs or vaccines to treat RVF. Many viruses have evolved unique strategies to overcome host immune responses in order to establish infection. One protein of RVFV called NSs is responsible for over-powering cellular antiviral defenses. NSs is known to degrade double-stranded (ds) RNA-dependent protein kinase (PKR), but neither the mechanism nor the functional significance of this activity has been fully understood. In this study we show that NSs promotes PKR degradation by recruiting PKR to the E3 ligase complex called SCF (SKP1-CUL1-F-box)FBXW11. A short stretch of six amino acids called the degron sequence in NSs regulates the NSs- FBXW11 interaction and is required for the assembly of the SCFFBXW11 complex. We further show that disruption of the SCFFBXW11-NSs complex, with either a small molecule or with NSs degron viral mutants, can block PKR degradation. Surprisingly, when NSs mediated PKR degradation was blocked, NSs was essential and sufficient to activate PKR, causing potent inhibition of RVFV infection by suppressing viral protein synthesis. Therefore early PKR activation induced by inactivation of the SCFFBXW11 is sufficient to induce potent inhibition of RVFV infection. These findings may provide new molecular targets for therapeutic intervention of this important disease.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Julie P. Tran
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Cary Retterer
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Krishna P. Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Chris A. Whitehouse
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 629] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
17
|
Trausch-Azar JS, Abed M, Orian A, Schwartz AL. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol 2015; 230:842-52. [PMID: 25204433 DOI: 10.1002/jcp.24812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
The E3 ubiquitin ligase and tumor suppressor SCF(Fbw7) exists as three isoforms that govern the degradation of a host of critical cell regulators, including c-Myc, cyclin E, and PGC-1α. Peroxisome proliferator activated receptor-gamma coactivator 1α (PGC-1α) is a transcriptional coactivator with broad effects on cellular energy metabolism. Cellular PGC-1α levels are tightly controlled in a dynamic state by the balance of synthesis and rapid degradation via the ubiquitin-proteasome system. Isoform-specific functions of SCF(Fbw7) are yet to be determined. Here, we show that the E3 ubiquitin ligase, SCF(Fbw7), regulates cellular PGC-1α levels via two independent, isoform-specific, mechanisms. The cytoplasmic isoform (SCF(Fbw7β)) reduces cellular PGC-1α levels via accelerated ubiquitin-proteasome degradation. In contrast, the nuclear isoform (SCF(Fbw7α)) increases cellular PGC-1α levels and protein stability via inhibition of ubiquitin-proteasomal degradation. When nuclear Fbw7α proteins are redirected to the cytoplasm, cellular PGC-1α protein levels are reduced through accelerated ubiquitin-proteasomal degradation. We find that SCF(Fbw7β) catalyzes high molecular weight PGC-1α-ubiquitin conjugation, whereas SCF(Fbw7α) produces low molecular weight PGC-1α-ubiquitin conjugates that are not effective degradation signals. Thus, selective ubiquitination by specific Fbw7 isoforms represents a novel mechanism that tightly regulates cellular PGC-1α levels. Fbw7 isoforms mediate degradation of a host of regulatory proteins. The E3 ubiquitin ligase, Fbw7, mediates PGC-1α levels via selective isoform-specific ubiquitination. Fbw7β reduces cellular PGC-1α via ubiquitin-mediated degradation, whereas Fbw7α increases cellular PGC-1α via ubiquitin-mediated stabilization.
Collapse
Affiliation(s)
- Julie S Trausch-Azar
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | |
Collapse
|
18
|
A design principle underlying the paradoxical roles of E3 ubiquitin ligases. Sci Rep 2014; 4:5573. [PMID: 24994517 PMCID: PMC5381699 DOI: 10.1038/srep05573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/16/2014] [Indexed: 12/25/2022] Open
Abstract
E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.
Collapse
|
19
|
Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2012; 32:3765-81. [PMID: 22964642 PMCID: PMC3522573 DOI: 10.1038/onc.2012.388] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023]
Abstract
Identification of regulatable mechanisms by which transcription factor NF-E2 p45-related factor 2 (Nrf2) is repressed will allow strategies to be designed that counter drug resistance associated with its up-regulation in tumours that harbour somatic mutations in Kelch-like ECH-associated protein-1 (Keap1), a gene that encodes a joint adaptor and substrate receptor for the Cul3-Rbx1/Roc1 ubiquitin ligase. We now show that mouse Nrf2 contains two binding sites for β-transducin repeat-containing protein (β-TrCP), which acts as a substrate receptor for the Skp1-Cul1-Rbx1/Roc1 ubiquitin ligase complex. Deletion of either binding site in Nrf2 decreased β-TrCP-mediated ubiquitylation of the transcription factor. The ability of one of the two β-TrCP-binding sites to serve as a degron could be both increased and decreased by manipulation of glycogen synthase kinase-3 (GSK-3) activity. Biotinylated-peptide pull-down assays identified DSGIS338 and DSAPGS378 as the two β-TrCP-binding motifs in Nrf2. Significantly, our pull-down assays indicated that β-TrCP binds a phosphorylated version of DSGIS more tightly than its non-phosphorylated counterpart, whereas this was not the case for DSAPGS. These data suggest that DSGIS, but not DSAPGS, contains a functional GSK-3 phosphorylation site. Activation of GSK-3 in Keap1-null mouse embryonic fibroblasts (MEFs), or in human lung A549 cells that contain mutant Keap1, by inhibition of the phosphoinositide 3-kinase (PI3K) – protein kinase B (PKB)/Akt pathway markedly reduced endogenous Nrf2 protein and decreased to 10-50% of normal the levels of mRNA for prototypic Nrf2-regulated enzymes, including the glutamate-cysteine ligase catalytic and modifier subunits, glutathione S-transferases Alpha-1 and Mu-1, heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Pre-treatment of Keap1−/− MEFs or A549 cells with the LY294002 PI3K inhibitor or the MK-2206 PKB/Akt inhibitor increased their sensitivity to acrolein, chlorambucil and cisplatin between 1.9-fold and 3.1-fold, and this was substantially attenuated by simultaneous pre-treatment with the GSK-3 inhibitor CT99021.
Collapse
Affiliation(s)
- S Chowdhry
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|
20
|
Soond SM, Chantry A. How ubiquitination regulates the TGF-β signalling pathway: new insights and new players: new isoforms of ubiquitin-activating enzymes in the E1-E3 families join the game. Bioessays 2012; 33:749-58. [PMID: 21932223 DOI: 10.1002/bies.201100057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ubiquitination of protein species in regulating signal transduction pathways is universally accepted as of fundamental importance for normal development, and defects in this process have been implicated in the progression of many human diseases. One pathway that has received much attention in this context is transforming growth factor-beta (TGF-β) signalling, particularly during the regulation of epithelial-mesenchymal transition (EMT) and tumour progression. While E3-ubiquitin ligases offer themselves as potential therapeutic targets, much remains to be unveiled regarding mechanisms that culminate in their regulation. With this in mind, the focus of this review highlights the regulation of the ubiquitination pathway and the significance of a recently described group of NEDD4 E3-ubiquitin ligase isoforms in the context of TGF-β pathway regulation. Moreover, we now broaden these observations to incorporate a growing number of protein isoforms within the ubiquitin ligase superfamily as a whole, and discuss their relevance in defining a new 'iso-ubiquitinome'.
Collapse
Affiliation(s)
- Surinder M Soond
- University of East Anglia, School Of Biological Sciences, Norwich, Norfolk, UK.
| | | |
Collapse
|