1
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
2
|
Yang J, Du F, Zhou X, Wang L, Li S, Fang R, Zhao J. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection. Parasitol Res 2018; 117:2623-2633. [PMID: 29948204 DOI: 10.1007/s00436-018-5954-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Chronic clinical Toxoplasma gondii (T. gondii) infection is the primary disease state that causes severe encephalitis. CD44 is a member of the cell adhesion molecule family and plays an important role in T. gondii infection. However, proteomic changes in CD44 during chronic T. gondii infection have rarely been reported. Thus, an iTRAQ-based proteomic study coupled with 2D-LC-MS/MS analysis was performed to screen CD44-related proteins during chronic T. gondii infection. As a result, a total of 2612 proteins were reliably identified and quantified. Subsequently, 259, 106, and 249 differentially expressed proteins (DEPs) were compared between CD44- mice (A) vs wild-type mice (B), B vs wild-type mice infected with T. gondii (C), and C vs CD44- mice infected with T. gondii (D). Gene ontology, KEGG pathway, and protein-protein interaction analyses were performed on the DEPs. According to the results, immune-related proteins were altered significantly among the A vs B, B vs C, and C vs D comparisons, which might indicate that chronic T. gondii infection caused changes in the host immune response. Additionally, Ca2+- and metabolism-related proteins were upregulated in C vs D, which supported the hypothesis that CD44 mediated the production of host Ca2+ and IFN-γ and that the parasite preferentially invaded cells expressing high levels of CD44. The present findings validate and enable a more comprehensive knowledge of the role of CD44 in hosts chronically infected with T. gondii, thus providing new ideas for future studies on the specific functions of CD44 in latent toxoplasmosis.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fen Du
- Hubei Centre for Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaoliu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lixia Wang
- Hubei Provincial Centre for Diseases Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Lin W, Suo Y, Deng Y, Fan Z, Zheng Y, Wei X, Chu Y. Morphological change of CD4(+) T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse. BMC Immunol 2015; 16:49. [PMID: 26306899 PMCID: PMC4549951 DOI: 10.1186/s12865-015-0108-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The changes in T-cell morphology during immunological synapse (IS) formation are essential for T-cell activation. Previous researches have shown that T cell changed from spherical to elongated and/or flattened during in contact with B cell. As most powerful antigen presenting cell, dendritic cell (DC) has a strong ability to activate T cells. However, the morphological change of T cell which contacts DC and the relationship between morphological change and T-cell activation are not very clear. Thus, we studied the morphological change of CD4(+) T cell during contact with DC. RESULTS Using live-cell imaging, we discovered diversity in the T-cell morphological changes during contact with DCs. The elongation-flattening of CD4(+) T cells correlated with a low-level Ca(2+) response and a loss of T-cell receptor (TCR) signalling molecules in the IS, including zeta-chain associated protein kinase 70 (ZAP-70), phospholipase C-γ (PLC-γ) and protein kinase C-θ (PKC-θ), whereas rounding-flattening correlated with sufficient CD4(+) T-cell activation. Different morphological changes were correlated with the different amount of accumulated filamentous actin (F-actin) in the IS. Disruption of F-actin by cytochalasin D impaired the morphological change and the localisation of calcium microdomains in the IS and decreased the calcium response in CD4(+) T cells. CONCLUSION Our study discovered the diversity in morphological change of T cells during contacted with DCs. During this process, the different morphological changes of T cells modulate T-cell activation by the different amount of F-actin accumulation in the IS, which controls the distribution of calcium microdomains to affect T-cell activation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yuting Deng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yijie Zheng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Al Heialy S, Zeroual M, Farahnak S, McGovern T, Risse PA, Novali M, Lauzon AM, Roman HN, Martin JG. Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival. THE JOURNAL OF IMMUNOLOGY 2015; 194:5626-34. [PMID: 25934863 DOI: 10.4049/jimmunol.1401718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022]
Abstract
Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes that were visualized by immunofluorescence and atomic force microscopy. Cell-to-cell transfer of the fluorescent dye calcein-AM confirmed cytoplasmic communication via nanotubes. Immunoreactive B cell lymphoma 2 (Bcl-2) and induced myeloid leukemia cell differentiation protein (Mcl-1), two major anti-apoptotic proteins, were present within the nanotubes. Downregulation of Mcl-1 by small interfering RNA in ASM cells significantly increased T cell apoptosis, whereas downregulation of Bcl-2 had no effect. Transfer of GFP-tagged Mcl-1 from ASM cells to CD4(+) T cells via the nanotubes confirmed directionality of transfer. In conclusion, activated T cells communicate with ASM cells via nanotube formation. Direct transfer of Mcl-1 from ASM to CD(+) T cells via nanotubes is involved in T cell survival. This study provides a novel mechanism of survival of CD4(+) T cells that is dependent on interaction with a structural cell.
Collapse
Affiliation(s)
- Saba Al Heialy
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Melissa Zeroual
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Soroor Farahnak
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Paul-André Risse
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Mauro Novali
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - Horia N Roman
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada; andResearch Institute, McGill University Health Centre, Montreal, Quebec H2X 2P2, Canada
| |
Collapse
|
5
|
Chapman NM, Houtman JCD. Functions of the FAK family kinases in T cells: beyond actin cytoskeletal rearrangement. Immunol Res 2015; 59:23-34. [PMID: 24816556 DOI: 10.1007/s12026-014-8527-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
T cells control the focus and extent of adaptive immunity in infectious and pathological diseases. The activation of T cells occurs when the T cell antigen receptor (TCR) and costimulatory and/or adhesion receptors are engaged by their ligands. This process drives signaling that promotes cytoskeletal rearrangement and transcription factor activation, both of which regulate the quality and magnitude of the T cell response. However, it is not fully understood how different receptor-induced signals combine to alter T cell activation. The related non-receptor tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are phosphorylated downstream of the TCR and several costimulatory and adhesion receptors. FAK family proteins integrate receptor-mediated signals that influence actin cytoskeletal rearrangement and effector T cell responses. In this review, we summarize the receptor-specific roles that FAK and Pyk2 control to influence T cell development and activation.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
6
|
Jokela T, Oikari S, Takabe P, Rilla K, Kärnä R, Tammi M, Tammi R. Interleukin-1β-induced Reduction of CD44 Ser-325 Phosphorylation in Human Epidermal Keratinocytes Promotes CD44 Homomeric Complexes, Binding to Ezrin, and Extended, Monocyte-adhesive Hyaluronan Coats. J Biol Chem 2015; 290:12379-93. [PMID: 25809479 DOI: 10.1074/jbc.m114.620864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sanna Oikari
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Takabe
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kirsi Rilla
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Markku Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Raija Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Gong J, Luk F, Jaiswal R, Bebawy M. Microparticles Mediate the Intercellular Regulation of microRNA-503 and Proline-Rich Tyrosine Kinase 2 to Alter the Migration and Invasion Capacity of Breast Cancer Cells. Front Oncol 2014; 4:220. [PMID: 25177548 PMCID: PMC4133752 DOI: 10.3389/fonc.2014.00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/01/2014] [Indexed: 11/13/2022] Open
Abstract
The successful treatment of cancer is hampered by drug resistance and metastasis. While these two obstacles were once considered separately, recent evidence associates resistance with an enhanced metastatic capacity. However, the underlying mechanisms remain undefined. We previously described the intercellular transfer of drug resistance via submicron vesicles called microparticles (MPs). We now propose that MPs derived from drug-resistant cells are also involved in the intercellular transfer of components to enhance the migration and invasion capacity of cells. Thus, MPs may be a conduit between resistance and metastasis. We used microarray analysis to identify regulatory microRNAs (miRNAs), which contribute to the dissemination of metastatic traits. miR-503 was downregulated in recipient cells following co-culture with MPs isolated from drug-resistant cells. miR-503 was inversely associated with metastasis, as demonstrated using wound healing/scratch migration assays and Matrigel®-coated transwell invasion assays. Proline-rich tyrosine kinase 2 (PYK2) was upregulated in recipient cells and associated with increased migration and invasion, with these phenotypes being reversed using a pharmacological inhibitor of PYK2 phosphorylation, tyrphostin A9. However, the MP-mediated promotion of metastatic traits was not due to the presence of these effectors in the MP cargo but rather due to down stream effector molecules in these pathways. This is the first demonstration that the role of MPs in trait acquisition extends beyond the direct transfer of vesicle components and also includes transfer of intermediary regulators that induce down stream mediators following transfer to recipient cells. This implicates an expanding role of MPs in cancer pathogenesis.
Collapse
Affiliation(s)
- Joyce Gong
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia ; Sydney Medical School and Bosch Institute, The University of Sydney , Sydney, NSW , Australia
| | - Frederick Luk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| | - Ritu Jaiswal
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| |
Collapse
|
8
|
Singh V, Erb U, Zöller M. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack. THE JOURNAL OF IMMUNOLOGY 2013; 191:5304-16. [PMID: 24127558 DOI: 10.4049/jimmunol.1301543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.
Collapse
Affiliation(s)
- Vibuthi Singh
- Department of Tumor Cell Biology, University Hospital of Surgery, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Gebhard AW, Jain P, Nair RR, Emmons MF, Argilagos RF, Koomen JM, McLaughlin ML, Hazlehurst LA. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma. Mol Cancer Ther 2013; 12:2446-58. [PMID: 24048737 DOI: 10.1158/1535-7163.mct-13-0310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.
Collapse
Affiliation(s)
- Anthony W Gebhard
- Corresponding Author: Lori A. Hazlehurst, Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S. Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 2012; 97:271-81. [PMID: 23129587 DOI: 10.1093/cvr/cvs332] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIMS Transient receptor potential melastatin 2 (TRPM2) highly expressed in immunocytes is a Ca(2+)-permeable non-selective cation channel activated by oxidative stress. Myocardial ischaemia/reperfusion (I/R) injury is characterized by acute inflammation associated with the augmentation of oxidative stress. We hypothesized that TRPM2 is implicated in the exacerbation of myocardial I/R injury. METHODS AND RESULTS Wild-type (Trpm2(+/+)) and Trpm2 knockout (Trpm2(-/-)) mice were subjected to ligation of the left main coronary artery followed by reperfusion. Myocardial infarction following I/R, but not ischaemia alone, was reduced more in Trpm2(-/-)mice than in Trpm2(+/+) mice and cardiac contractile functions were also improved in Trpm2(-/-)mice. TRPM2 was highly expressed in the polymorphonuclear leucocytes (PMNs) rather than in the heart. The number of neutrophils and myeloperoxidase (MPO) activity in the reperfused area following ischaemia was lowered in Trpm2(-/-) mice. When Trpm2(+)(/+) or Trpm2(-/-) PMNs were administered to the Trpm2(-/-) heart ex vivo through the perfusate or in vivo by iv injection, Trpm2(+)(/+) PMNs produced enlargement of the infarct size. Following in vitro regional I/R, a pharmacological inhibitor of TRPM2 reduced the infarct size. The combination of H(2)O(2) and leukotriene B(4) (LTB(4)) increased intracellular Ca(2+) concentration and their adhesion to endothelial cells in Trpm2(+)(/+) but not in Trpm2(-/-)PMNs. CONCLUSION These findings indicate that neutrophil TRPM2 is implicated in the exacerbation of myocardial reperfusion injury. Accumulation of neutrophils in the reperfused area mediated by TRPM2 activation is likely to play a crucial role in myocardial I/R injury.
Collapse
Affiliation(s)
- Toshihito Hiroi
- Department of Pathophysiology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baaten BJG, Tinoco R, Chen AT, Bradley LM. Regulation of Antigen-Experienced T Cells: Lessons from the Quintessential Memory Marker CD44. Front Immunol 2012; 3:23. [PMID: 22566907 PMCID: PMC3342067 DOI: 10.3389/fimmu.2012.00023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/08/2012] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of the cell-surface receptor CD44 as a marker for antigen (Ag)-experienced, effector and memory T cells, surprisingly little is known regarding its function on these cells. The best-established function of CD44 is the regulation of cell adhesion and migration. As such, the interactions of CD44, primarily with its major ligand, the extracellular matrix (ECM) component hyaluronic acid (HA), can be crucial for the recruitment and function of effector and memory T cells into/within inflamed tissues. However, little is known about the signaling events following engagement of CD44 on T cells and how cooperative interactions of CD44 with other surface receptors affect T cell responses. Recent evidence suggests that the CD44 signaling pathway(s) may be shared with those of other adhesion receptors, and that these provide contextual signals at different anatomical sites to ensure the correct T cell effector responses. Furthermore, CD44 ligation may augment T cell activation after Ag encounter and promote T cell survival, as well as contribute to regulation of the contraction phase of an immune response and the maintenance of tolerance. Once the memory phase is established, CD44 may have a role in ensuring the functional fitness of memory T cells. Thus, the summation of potential signals after CD44 ligation on T cells highlights that migration and adhesion to the ECM can critically impact the development and homeostasis of memory T cells, and may differentially affect subsets of T cells. These aspects of CD44 biology on T cells and how they might be modulated for translational purposes are discussed.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | | | | | | |
Collapse
|