1
|
Wang F, Zhou S, Qi D, Xiang SH, Wong ET, Wang X, Fonkem E, Hsieh TC, Yang J, Kirmani B, Shabb JB, Wu JM, Wu M, Huang JH, Yu WH, Wu E. Nucleolin Is a Functional Binding Protein for Salinomycin in Neuroblastoma Stem Cells. J Am Chem Soc 2019; 141:3613-3622. [PMID: 30689374 DOI: 10.1021/jacs.8b12872] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study is to illuminate a novel therapeutic approach by identifying a functional binding target of salinomycin, an emerging anticancer stem cell (CSC) agent, and to help dissect the underlying action mechanisms. By utilizing integrated strategies, we identify that nucleolin (NCL) is likely a salinomycin-binding target and a critical regulator involved in human neuroblastoma (NB) CSC activity. Salinomycin markedly suppresses NB CD34 expression and reduces CD34+ cell population in an NCL-dependent manner via disruption of the interaction of NCL with CD34 promoter. The elevated levels of NCL expression in NB tumors are associated with poor patient survival. Altogether, these results indicate that NCL is likely a novel functional salinomycin-binding target that exhibits the potential to be a prognostic marker for NB therapy.
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - Shuang Zhou
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Dan Qi
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences , University of Nebraska-Lincoln , Lincoln , Nebraska 68583 , United States
| | - Eric T Wong
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Xuejing Wang
- Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan 450052 , China
| | - Ekokobe Fonkem
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
- LIVESTRONG Cancer Institutes, Dell Medical School , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology , New York Medical College , Valhalla , New York 10595 , United States
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Batool Kirmani
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - John B Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology , New York Medical College , Valhalla , New York 10595 , United States
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| | - Jason H Huang
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - Wei-Hsuan Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Erxi Wu
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
- LIVESTRONG Cancer Institutes, Dell Medical School , The University of Texas at Austin , Austin , Texas 78712 , United States
- Department of Pharmaceutical Sciences , Texas A & M University College of Pharmacy , College Station , Texas 77843 , United States
| |
Collapse
|
2
|
Bhatia S, Reister S, Mahotka C, Meisel R, Borkhardt A, Grinstein E. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 2015; 29:2208-20. [PMID: 26183533 DOI: 10.1038/leu.2015.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- S Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - S Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - C Mahotka
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - E Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Yamada T, Park CS, Burns A, Nakada D, Lacorazza HD. The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells. PLoS One 2012; 7:e38280. [PMID: 22693613 PMCID: PMC3365016 DOI: 10.1371/journal.pone.0038280] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/02/2012] [Indexed: 02/06/2023] Open
Abstract
Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G(0)/G(1) switch gene 2 (G0S2) are enriched in lineage(-) Sca-1(+) c-kit(+) (LSK) CD150(+) CD48(-) CD41(-) cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150(+) CD48(-) cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150(+) CD48(-)) and progenitor cells (LS(-)K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150(+) CD48(-) cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Chun Shik Park
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Audrea Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - H. Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| |
Collapse
|
4
|
Abstract
Posttranscriptional mechanisms are now widely acknowledged to play a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation, and tumorigenesis. Although much attention has focused on microRNAs as regulators of mRNA stability/translation, recent data have highlighted the role of several diverse classes of AU-rich RNA-binding protein in the regulation of mRNA decay/stabilization. AU-rich elements are found in the 3'-untranslated region of many mRNAs that encode regulators of cell growth and survival, such as cytokines and onco/tumor-suppressor proteins. These are targeted by a burgeoning number of different RNA-binding proteins. Three distinct types of AU-rich RNA binding protein (ARE poly-U-binding degradation factor-1/AUF1, Hu antigen/HuR/HuA/ELAVL1, and the tristetraprolin/ZFP36 family of proteins) are essential for normal hematopoiesis. Together with 2 further AU-rich RNA-binding proteins, nucleolin and KHSRP/KSRP, the functions of these proteins are intimately associated with pathways that are dysregulated in various hematopoietic malignancies. Significantly, all of these AU-rich RNA-binding proteins function via an interconnected network that is integrated with microRNA functions. Studies of these diverse types of RNA binding protein are providing novel insight into gene-regulatory mechanisms in hematopoiesis in addition to offering new opportunities for developing mechanism-based targeted therapeutics in leukemia and lymphoma.
Collapse
|