1
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
2
|
Dunston K, Hunter MI, Johannesen E, Jung JS, Kim TH, Yoo JY, Jeong JW. ERBB2 Targeting Reveals a Significant Suppression of Tumorigenesis in Murine Endometrial Cancer with Pten Mutation. Reprod Sci 2024; 31:2458-2467. [PMID: 38637476 DOI: 10.1007/s43032-024-01546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Endometrial cancer is the most common gynecologic malignancy. PTEN is a negative regulator of PI3K signaling and is deficient in > 50% of primary human endometrial cancer. Amplification of ERBB2 promotes tumorigenesis and pathogenesis of several human cancers. However, the effect of ERBB2 targeting has not been studied in endometrial cancer with PTEN mutations. The murine model Pgrcre/+Erbb2f/fPtenf/f (Erbb2d/d Ptend/d) was developed to evaluate the effect of ERBB2 targeted therapy in endometrial cancer with PTEN deficiency. Histopathological and molecular analysis was performed for Ptend/d and Erbb2d/dPtend/d mice. Histopathological analysis revealed that Erbb2d/dPtend/d mice significantly reduced development and progression of endometrial cancer compared to Ptend/d mice. Furthermore, percentage of proliferative cells in Erbb2d/dPtend/d mice revealed anti-tumorigenic effect of Erbb2 ablation compared to Ptend/d mice. Our results demonstrate that Erbb2 ablation reveals a significant suppression of tumorigenesis on endometrial cancer of Ptend/d mice. Our results suggest that Erbb2 functions as an oncogene in endometrial cancer of Ptend/d mice implying that Erbb2 targeting can be used as an effective therapeutic approach for treatment of endometrial cancer with PTEN deficiency to hinder cancer development.
Collapse
Affiliation(s)
- Krystina Dunston
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Mark I Hunter
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Eric Johannesen
- Department of Pathology Medical Science Building (MSB), University of Missouri, Columbia, MO, USA
| | - Jin-Seok Jung
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Leyton JV. Improving Receptor-Mediated Intracellular Access and Accumulation of Antibody Therapeutics-The Tale of HER2. Antibodies (Basel) 2020; 9:E32. [PMID: 32668710 PMCID: PMC7551051 DOI: 10.3390/antib9030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic anti-HER2 antibodies and antibody-drug conjugates (ADCs) have undoubtedly benefitted patients. Nonetheless, patients ultimately relapse-some sooner than others. Currently approved anti-HER2 drugs are expensive and their cost-effectiveness is debated. There is increased awareness that internalization and lysosomal processing including subsequent payload intracellular accumulation and retention for ADCs are critical therapeutic attributes. Although HER2 preferential overexpression on the surface of tumor cells is attractive, its poor internalization and trafficking to lysosomes has been linked to poor therapeutic outcomes. To help address such issues, this review will comprehensively detail the most relevant findings on internalization and cellular accumulation for approved and investigational anti-HER2 antibodies and ADCs. The improved clarity of the HER2 system could improve antibody and ADC designs and approaches for next-generation anti-HER2 and other receptor targeting agents.
Collapse
Affiliation(s)
- Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| |
Collapse
|
4
|
Seetaha S, Boonyarit B, Tongsima S, Songtawee N, Choowongkomon K. Potential tripeptides against the tyrosine kinase domain of human epidermal growth factor receptor (HER) 2 through computational and kinase assay approaches. J Mol Graph Model 2020; 97:107564. [DOI: 10.1016/j.jmgm.2020.107564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/21/2023]
|
5
|
Iyer P, Shrikhande SV, Ranjan M, Joshi A, Gardi N, Prasad R, Dharavath B, Thorat R, Salunkhe S, Sahoo B, Chandrani P, Kore H, Mohanty B, Chaudhari V, Choughule A, Kawle D, Chaudhari P, Ingle A, Banavali S, Gera P, Ramadwar MR, Prabhash K, Barreto SG, Dutt S, Dutt A. ERBB2 and KRAS alterations mediate response to EGFR inhibitors in early stage gallbladder cancer. Int J Cancer 2019; 144:2008-2019. [PMID: 30304546 PMCID: PMC6378102 DOI: 10.1002/ijc.31916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
The uncommonness of gallbladder cancer in the developed world has contributed to the generally poor understanding of the disease. Our integrated analysis of whole exome sequencing, copy number alterations, immunohistochemical, and phospho-proteome array profiling indicates ERBB2 alterations in 40% early-stage rare gallbladder tumors, among an ethnically distinct population not studied before, that occurs through overexpression in 24% (n = 25) and recurrent mutations in 14% tumors (n = 44); along with co-occurring KRAS mutation in 7% tumors (n = 44). We demonstrate that ERBB2 heterodimerizes with EGFR to constitutively activate the ErbB signaling pathway in gallbladder cells. Consistent with this, treatment with ERBB2-specific, EGFR-specific shRNA or with a covalent EGFR family inhibitor Afatinib inhibits tumor-associated characteristics of the gallbladder cancer cells. Furthermore, we observe an in vivo reduction in tumor size of gallbladder xenografts in response to Afatinib is paralleled by a reduction in the amounts of phospho-ERK, in tumors harboring KRAS (G13D) mutation but not in KRAS (G12V) mutation, supporting an essential role of the ErbB pathway. In overall, besides implicating ERBB2 as an important therapeutic target under neo-adjuvant or adjuvant settings, we present the first evidence that the presence of KRAS mutations may preclude gallbladder cancer patients to respond to anti-EGFR treatment, similar to a clinical algorithm commonly practiced to opt for anti-EGFR treatment in colorectal cancer.
Collapse
Affiliation(s)
- Prajish Iyer
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Shailesh V. Shrikhande
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Malika Ranjan
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Asim Joshi
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Nilesh Gardi
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Ratnam Prasad
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bhasker Dharavath
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Rahul Thorat
- Laboratory Animal FacilityAdvanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Sameer Salunkhe
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Shilpee laboratoryAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bikram Sahoo
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Pratik Chandrani
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Hitesh Kore
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bhabani Mohanty
- Small Animal Imaging facilityAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Vikram Chaudhari
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Anuradha Choughule
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Dhananjay Kawle
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Pradip Chaudhari
- Small Animal Imaging facilityAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Arvind Ingle
- Laboratory Animal FacilityAdvanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Shripad Banavali
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Poonam Gera
- Tissue BiorepositoryAdvanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Mukta R. Ramadwar
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of PathologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Kumar Prabhash
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Savio George Barreto
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Shilpee Dutt
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Shilpee laboratoryAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Amit Dutt
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| |
Collapse
|
6
|
Molecular dynamics simulations of asymmetric heterodimers of HER1/HER2 complexes. J Mol Model 2017; 24:30. [DOI: 10.1007/s00894-017-3544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
7
|
Telli E, Genç H, Tasa BA, Sinan Özalp S, Tansu Koparal A. In vitro evaluation of combination of EGCG and Erlotinib with classical chemotherapeutics on JAR cells. In Vitro Cell Dev Biol Anim 2017; 53:651-658. [PMID: 28462491 DOI: 10.1007/s11626-017-0145-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/21/2017] [Indexed: 10/19/2022]
Abstract
Gestational Trophoblastic Neoplasia (GTN) is a term used for a group of malignant gynecological tumors including choriocarcinoma. Low-risk neoplasias can be cured using single agents Methotrexate (MTX) and actinomycin-D (ACD), but in certain cases, decreased responsiveness and serious side effects occur. Therefore, researchers have been attempting to find new treatment modalities. One of the most popular way for increasing cancer patient survival rates is supporting treatment with adjuvant molecules or chemosensitizers. For this purpose, we investigated epigallocatechin-3-gallate (EGCG), a green tea cathecin, and Erlotinib, an EGFR tyrosine kinase inhibitor, as single agents and combined with MTX or ACD. In accordance with this, JAR (human placenta choriocarcinoma) cell line was used as an in vitro model and MTT, LDH, caspase-3 activation, RT-PCR, and Western Blot analyses were performed to investigate the effects of the test materials. Our studies demonstrate that combination of Erlotinib and EGCG with MTX and ACD decreases JAR cell proliferation and metastatic HER2 protein synthesis and increases caspase-3 activation compared to ACD or MTX alone. In addition, significant increase was observed in the apoptotic Bax gene, but no notable protein synthesis occurred in the Western Blot analysis, which suggests that combination of Erlotinib and EGCG with classical chemotherapeutics ACD or MTX may lead the JAR cells to apoptosis, but not by a mitochondrial pathway. All the results indicate that the synergetic effect of Erlotinib and EGCG with classical chemotherapeutics may help to increase patient survival rates of choriocarcinoma, but the detailed mechanism needs further investigation.
Collapse
Affiliation(s)
- Elçin Telli
- Gynecology and Obstetrics Department, Eskişehir Osmangazi University Medical Faculty, Eskişehir, Turkey
| | - Hatice Genç
- Biology Department, Anadolu Üniversitesi Faculty of Science, Eskişehir, Turkey.
| | - Burcugül Altuğ Tasa
- Biology Department, Anadolu Üniversitesi Faculty of Science, Eskişehir, Turkey
| | - S Sinan Özalp
- Gynecology and Obstetrics Department, Eskişehir Osmangazi University Medical Faculty, Eskişehir, Turkey
| | - A Tansu Koparal
- Biology Department, Anadolu Üniversitesi Faculty of Science, Eskişehir, Turkey
| |
Collapse
|
8
|
Superior Suppression of ErbB2-positive Tumor Cells by a Novel Human Triparatopic Tribody. J Immunother 2017; 40:117-128. [DOI: 10.1097/cji.0000000000000152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Jeong J, Kim W, Kim LK, VanHouten J, Wysolmerski JJ. HER2 signaling regulates HER2 localization and membrane retention. PLoS One 2017; 12:e0174849. [PMID: 28369073 PMCID: PMC5378417 DOI: 10.1371/journal.pone.0174849] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
ErbB2/HER2/Neu is a receptor tyrosine kinase that is overexpressed in 25-30% of human breast cancers, usually associated with amplification of the ERBB2 gene. HER2 has no recognized ligands and heterodimers between HER2 and EGFR (ErbB1/HER1) or HER2 and ErbB3/HER3 are important in breast cancer. Unlike other ErbB family members, HER2 is resistant to internalization and degradation, and remains at the cell surface to signal for prolonged periods after it is activated. Although the mechanisms underlying retention of HER2 at the cell surface are not fully understood, prior studies have shown that, in order to avoid internalization, HER2 must interact with the chaperone, HSP90, and the calcium pump, PMCA2, within specific plasma membrane domains that protrude from the cell surface. In this report, we demonstrate that HER2 signaling, itself, is important for the formation and maintenance of membrane protrusions, at least in part, by maintaining PMCA2 expression and preventing increased intracellular calcium concentrations. Partial genetic knockdown of HER2 expression or pharmacologic inhibition of HER2 signaling causes the depletion of membrane protrusions and disruption of the interactions between HER2 and HSP90. This is associated with the ubiquitination of HER2, its internalization with EGFR or HER3, and its degradation. These results suggest a model by which some threshold of HER2 signaling is required for the formation and/or maintenance of multi-protein signaling complexes that reinforce and prolong HER2/EGFR or HER2/HER3 signaling by inhibiting HER2 ubiquitination and internalization.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS project to Medical Science, Severance Institute for Vascular and Metabolic Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John J. Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
10
|
von Schwarzenberg K, Lajtos T, Simon L, Müller R, Vereb G, Vollmar AM. V-ATPase inhibition overcomes trastuzumab resistance in breast cancer. Mol Oncol 2013; 8:9-19. [PMID: 24055142 DOI: 10.1016/j.molonc.2013.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022] Open
Abstract
The HER2 oncogene targeting drug trastuzumab shows remarkable efficacy in patients overexpressing HER2. However acquired or primary resistance develops in most of the treated patients why alternative treatment strategies are strongly needed. As endosomal sorting and recycling are crucial steps for HER2 activity and the vacuolar H⁺-ATPase (V-ATPase) is an important regulator of endocytotic trafficking, we proposed that targeting V-ATPase opens a new therapeutic strategy against trastuzumab-resistant tumor cells in vitro and in vivo. V-ATPase inhibition with archazolid, a novel inhibitor of myxobacterial origin, results in growth inhibition, apoptosis and impaired HER2 pro-survival signaling of the trastuzumab-resistant cell line JIMT-1. This is accompanied by a decreased expression on the plasma membrane and accumulation of HER2 in the cytosol, where it colocalizes with endosomes, lysosomes and autophagosomes. Importantly, microscopic analysis of JIMT-1 xenograft tumor tissue of archazolid treated mice confirms the defect in HER2-recycling which leads to reduced tumor growth. These results suggest that V-ATPase inhibition by archazolid induces apoptosis and inhibits growth of trastuzumab-resistant tumor cells by retaining HER2 in dysfunctional vesicles of the recycling pathway and consequently abrogates HER2-signaling in vitro as well as in vivo. V-ATPase inhibition is thus suggested as a promising strategy for treatment of trastuzumab-resistant tumors.
Collapse
Affiliation(s)
- Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Tamás Lajtos
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Làszló Simon
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO 151150, 66041 Saarbrücken, Germany
| | - György Vereb
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; MTA Cell Biology and Signaling Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
11
|
Hartman ZR, Schaller MD, Agazie YM. The tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration. Mol Cancer Res 2013; 11:651-64. [PMID: 23512980 DOI: 10.1158/1541-7786.mcr-12-0578] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of receptor tyrosine kinases (RTK) signaling. Furthermore, SHP2 is known to promote cell migration and invasiveness, key steps in cancer metastasis. To date, however, the mechanism by which SHP2 regulates cell movement is not fully understood. In the current report, a new role for SHP2 in regulating cell migration has been suggested. We show that SHP2 mediates lamellipodia persistence and cell polarity to promote directional cell migration in the MDA-MB231 and the MDA-MB468 basal-like and triple-negative breast cancer cell lines. We further show that SHP2 modulates the activity of focal adhesion kinase (FAK) by dephosphorylating pTyr397, the autophosphorylation site that primes FAK function. Because hyperactivation of FAK is known to counter the maturation of nascent focal complexes to focal adhesions, we propose that one of the mechanisms by which SHP2 promotes lamellipodia persistence is by downregulating FAK activity through dephosphorylation of pTyr397. The finding that inhibition of FAK activity partially restores EGF-induced lamellipodia persistence and cell migration in SHP2-silenced cells supports our proposition that SHP2 promotes growth factor-induced cell movement by acting, at least in part, on FAK. However, the effect of SHP2 inhibition in nonstimulated cells seems FAK independent as there was no significant difference between the control and the SHP2-silenced cells in pY397-FAK levels. Also, FAK inhibition did not rescue Golgi orientation defects in SHP2-silenced cells, suggesting that SHP2 acts through other mechanisms to promote cell polarity.
Collapse
Affiliation(s)
- Zachary R Hartman
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, WV 26506, USA
| | | | | |
Collapse
|
12
|
HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene 2012; 32:4169-80. [PMID: 23027125 PMCID: PMC3538112 DOI: 10.1038/onc.2012.418] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022]
Abstract
One of the causes of breast cancer is overexpression of the human epidermal growth factor receptor 2 (HER2). Enhanced receptor autophosphorylation and resistance to activation-induced down regulation have been suggested as mechanisms for HER2-induced sustained signaling and cell transformation. However, the molecular mechanisms underlying these possibilities remain incompletely understood. In the current report, we present evidence that show that HER2 overexpression does not lead to receptor hyper-autophosphorylation, but alters patterns in a manner that favors receptor stability and sustained signaling. Specifically, HER2 overexpression blocks EGFR tyrosine phosphorylation on Y1045 and Y1068, the known docking sites of c-Cbl and Grb2, respectively, while promoting phosphorylation on Y1173, the known docking site of the Gab adaptor proteins and phospholipase C gamma (PLCγ). Under these conditions, HER2 itself is phosphorylated on Y1221/1222, with no known role, and on Y1248 that corresponds to Y1173 of EGFR. Interestingly, suppressed EGFR autophosphorylation on the Grb2 and c-Cbl binding sites correlated with receptor stability and sustained signaling, suggesting that HER2 accomplishes these tasks by altering autophosphorylation patterns. In conformity with these findings, mutation of the Grb2 binding site on EGFR (Y1068F-EGFR) conferred resistance to ligand-induced degradation which in turn induced sustained signaling, and increased cell proliferation and transformation. These findings suggest that the Grb2 binding site on EGFR is redundant for signaling, but critical for receptor regulation. On the other hand, mutation of the putative Grb2 binding site in HER2 (Y1139) did not affect stability, signaling or transformation, suggesting that Y1139 in HER2 may not serve as a Grb2 binding site. In agreement with the role of EGFR in HER2 signaling, inhibition of EGFR expression reduced HER2-induced anchorage-independent growth and tumorigenesis. These results imply that complementing HER2-targeted therapies with anti-EGFR drugs may be beneficial in HER2-positive breast cancer.
Collapse
|