1
|
Jeon S, Jeong P, Kang H, Kim MJ, Yun JH, Lim KS, Song B, Kim S, Cho S, Sim B. NEK2 plays an essential role in porcine embryonic development by maintaining mitotic division and DNA damage response via the Wnt/β-catenin signalling pathway. Cell Prolif 2024; 57:e13626. [PMID: 38426218 PMCID: PMC11294417 DOI: 10.1111/cpr.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
NIMA-related kinase 2 (NEK2) is a serine/threonine protein kinase that regulates mitosis and plays pivotal roles in cell cycle regulation and DNA damage repair. However, its function in porcine embryonic development is unknown. In this study, we used an NEK2-specific inhibitor, JH295 (JH), to investigate the role of NEK2 in embryonic development and the underlying regulatory mechanisms. Inhibition of NEK2 after parthenogenesis activation or in vitro fertilization significantly reduced the rates of cleavage and blastocyst formation, the numbers of trophectoderm and total cells and the cellular survival rate compared with the control condition. NEK2 inhibition delayed cell cycle progression at all stages from interphase to cytokinesis during the first mitotic division; it caused abnormal nuclear morphology in two- and four-cell stage embryos. Additionally, NEK2 inhibition significantly increased DNA damage and apoptosis, and it altered the expression levels of DNA damage repair- and apoptosis-related genes. Intriguingly, NEK2 inhibition downregulated the expression of β-catenin and its downstream target genes. To validate the relationship between Wnt/β-catenin signalling and NEK2 during porcine embryonic development, we cultured porcine embryos in JH-treated medium with or without CHIR99021, a Wnt activator. CHIR99021 co-treatment strongly restored the developmental parameters reduced by NEK2 inhibition to control levels. Our findings suggest that NEK2 plays an essential role in porcine embryonic development by regulating DNA damage repair and normal mitotic division via the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Se‐Been Jeon
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Pil‐Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Hyo‐Gu Kang
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life ScienceChungnam National UniversityDaejeonRepublic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Ji Hyeon Yun
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal BioScience, School of Animal Life ConvergenceHankyong National UniversityAnsungRepublic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Bong‐Seok Song
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Functional GenomicsUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Seong‐Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Bo‐Woong Sim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| |
Collapse
|
2
|
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal 2020; 18:108. [PMID: 32650795 PMCID: PMC7353806 DOI: 10.1186/s12964-020-00562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background The pre-implantation embryo in a competent status and post-implantation fully differentiation of the inner cell mass (ICM) and trophectoderm (TE) are prerequisites of successful implantation. Type I embryonic epithelial-mesenchymal transition (EMT) involves in these processes. A high level of the mir-let-7 family was found in the dormant mouse embryo of implantation failure in our previous study. Besides, its natural inhibitor lin28a was found to function in maintained stem cell pluripotency and involved in early embryo nucleolus construction. Until now, few studies got involved in the exact molecular mechanism that affects embryo implantation potential. In this study, the possible function of Wnt/β-catenin-lin28a/let-7 pathway in mouse embryo implantation was studied. Methods ICR mouse, Lin28a/Let-7 g transgenic mice (Lin28a-TG/Let-7 g-TG), and implanting dormant mice models were used for the study. Results Wnt/β-catenin signaling is essential in embryo implantation, which promotes embryo implantation through directly trigger lin28a expression, thus represses the mir-let-7 family. Lin28a and mir-let-7 both participate in implantation via an inverse function. Lin28a and mir-let-7 participate in embryo implantation through embryonic EMT. Conclusions Wnt/β-catenin signaling promotes embryo implantation and accompanying embryonic EMT, which is mediated by directly activate lin28a/let-7 axis. Video abstract
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Juanzi Shi
- Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
3
|
Regulation of human trophoblast surrogate Jeg-3 spheroids implantation potential by Wnt/β-catenin pathway and lin28a/let-7a axis. Exp Cell Res 2020; 388:111718. [DOI: 10.1016/j.yexcr.2019.111718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
|
4
|
Huang Y, Yuan L, Li T, Liu X, Yu Y, Ouyang H, Wang B. IWP2 impairs the development of porcine somatic cell nuclear transfer embryos via Wnt signaling pathway inactivation. Biomed Rep 2017; 7:36-40. [PMID: 28685057 DOI: 10.3892/br.2017.918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling is critical in embryonic development and post-embryonic tissue homeostasis. The aim of the present study was to evaluate the expression levels of canonical Wnt signaling genes in porcine somatic cell nuclear transfer (SCNT) embryos. Quantitative polymerase chain reaction analysis was performed in porcine SCNT embryos, and the results indicated that the temporal expression patterns of canonical signaling genes were similar between in vivo and SCNT embryos from the 2-cell to the blastocyst stage. In addition, aberrant expression in a small number of Wnt signaling genes in SCNT embryos was identified. IWP2, an inhibitor of Wnt processing, was applied to the culture of SCNT embryos. The Wnt signaling pathway in the SCNT blastocysts may be inactivated via IWP2 treatment, reflecting the low expression levels of c-Myc and peroxisome proliferator-activated receptor δ. Furthermore, blastocyst hatching was damaged by IWP2 treatment. These findings indicate that the canonical Wnt signaling pathway is important for SCNT embryo development.
Collapse
Affiliation(s)
- Yongye Huang
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China.,Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Tianye Li
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Xiangfu Liu
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Bing Wang
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| |
Collapse
|
5
|
Nayeem SB, Arfuso F, Dharmarajan A, Keelan JA. Role of Wnt signalling in early pregnancy. Reprod Fertil Dev 2017; 28:525-44. [PMID: 25190280 DOI: 10.1071/rd14079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell-cell and cell-extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.
Collapse
Affiliation(s)
- Sarmah B Nayeem
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeffrey A Keelan
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| |
Collapse
|
6
|
Guo J, Zhao MH, Liang S, Choi JW, Kim NH, Cui XS. Liver receptor homolog 1 influences blastocyst hatching in pigs. J Reprod Dev 2016; 62:297-303. [PMID: 26971889 PMCID: PMC4919294 DOI: 10.1262/jrd.2015-159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Liver receptor homolog 1 (Lrh1, also known as Nr5a2) belongs to the orphan
nuclear receptor superfamily and has diverse functions in development, metabolism, and cell differentiation
and death. Lrh1 regulates the expression of Oct4, which is a key factor of
early embryonic differentiation. However, the role of Lrh1 in early development of mammalian
embryo is unknown. In the present study, the localization, Lrh1 mRNA expression, and LRH1
protein levels in porcine early parthenotes were examined by immunofluorescence and real-time
reverse-transcription polymerase chain reaction. To determine the role of Lrh1 in porcine
early embryo development, the parthenotes were treated with the specific LRH1 antagonist 505601. The
immunofluorescence signal for LRH1 was only observed in the nucleus of blastocysts. The blastocyst
developmental rate in the presence of 50 and 100 μM 505601 was significantly lower than that in the control
group. The blastocyst hatching rate was also reduced in the presence of 50 and 100 μM 505601 than that under
control conditions. The latter effect was possibly due to the decreased expression of hatching-related genes
such as Fn1, Itgα5, and Cox2 upon the inhibition of
Lrh1. Incubation with the LRH1 antagonist also increased the number of apoptotic cells
among the blastocysts. Moreover, LRH1 inhibition enhanced the expression of the pro-apoptotic genes
Bax and Casp3, and reduced the expression of the anti-apoptotic gene
Bcl2. Lrh1 inhibition also led to significant decrease in the expression
levels of Oct4 mRNA and octamer-binding transcription factor 4 (OCT4) protein in the
blastocysts. In conclusion, Lrh1 affects blastocyst formation and hatching in porcine
embryonic development through the regulation of OCT4 expression and cell apoptosis.
Collapse
Affiliation(s)
- Jing Guo
- Department of Animal Science, Chungbuk National University, Chungbuk 362-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Pluripotent-related gene expression analyses in single porcine recloned embryo. Biotechnol Lett 2014; 36:1161-9. [DOI: 10.1007/s10529-014-1467-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|