1
|
Niazi Y, Paramasivam N, Blocka J, Kumar A, Huhn S, Schlesner M, Weinhold N, Sijmons R, De Jong M, Durie B, Goldschmidt H, Hemminki K, Försti A. Investigation of Rare Non-Coding Variants in Familial Multiple Myeloma. Cells 2022; 12:cells12010096. [PMID: 36611892 PMCID: PMC9818386 DOI: 10.3390/cells12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy whereby a single clone of plasma cells over-propagates in the bone marrow, resulting in the increased production of monoclonal immunoglobulin. While the complex genetic architecture of MM is well characterized, much less is known about germline variants predisposing to MM. Genome-wide sequencing approaches in MM families have started to identify rare high-penetrance coding risk alleles. In addition, genome-wide association studies have discovered several common low-penetrance risk alleles, which are mainly located in the non-coding genome. Here, we further explored the genetic basis in familial MM within the non-coding genome in whole-genome sequencing data. We prioritized and characterized 150 upstream, 5' untranslated region (UTR) and 3' UTR variants from 14 MM families, including 20 top-scoring variants. These variants confirmed previously implicated biological pathways in MM development. Most importantly, protein network and pathway enrichment analyses also identified 10 genes involved in mitogen-activated protein kinase (MAPK) signaling pathways, which have previously been established as important MM pathways.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: (Y.N.); (K.H.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Joanna Blocka
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Stefanie Huhn
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg (NCT), 69120 Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rolf Sijmons
- University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Mirjam De Jong
- University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Brian Durie
- Cedars Sinai Cancer Center, Los Angeles, CA 90048, USA
| | - Hartmut Goldschmidt
- Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
- Correspondence: (Y.N.); (K.H.)
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Zhang M, Liu J, Yu C, Tang S, Jiang G, Zhang J, Zhang H, Xu J, Xu W. Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m 6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122370. [PMID: 36552577 PMCID: PMC9774189 DOI: 10.3390/antiox11122370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.
Collapse
Affiliation(s)
- Meijuan Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jin Liu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Chengbing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Shangshang Tang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
3
|
Abstract
The ubiquitin–proteasome system (UPS) is responsible for the rapid targeting of proteins for degradation at 26S proteasomes and requires the orchestrated action of E1, E2 and E3 enzymes in a well-defined cascade. F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases that determine which proteins are ubiquitinated. To date, around 70 FBPs have been identified in humans and can be subdivided into distinct families, based on the protein-recruiting domains they possess. The FBXL subfamily is defined by the presence of multiple leucine-rich repeat (LRR) protein-binding domains. But how the 22 FBPs of the FBXL family achieve their individual specificities, despite having highly similar structural domains to recruit their substrates, is not clear. Here, we review and explore the FBXL family members in detail highlighting their structural and functional similarities and differences and how they engage their substrates through their LRRs to adopt unique interactomes.
Collapse
Affiliation(s)
- Bethany Mason
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| |
Collapse
|
4
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
5
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Chok KC, Ng CH, Koh RY, Ng KY, Chye SM. The potential therapeutic actions of melatonin in colorectal cancer. Horm Mol Biol Clin Investig 2019; 39:hmbci-2019-0001. [DOI: 10.1515/hmbci-2019-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Colorectal cancer (CRC) is the third most common cancer and lethal disease worldwide. Melatonin, an indoleamine produced in pineal gland, shows anticancer effects on a variety of cancers, especially CRC. After clarifying the pathophysiology of CRC, the association of circadian rhythm with CRC, and the relationship between shift work and the incidence of CRC is reviewed. Next, we review the role of melatonin receptors in CRC and the relationship between inflammation and CRC. Also included is a discussion of the mechanism of gene regulation, control of cell proliferation, apoptosis, autophagy, antiangiogenesis and immunomodulation in CRC by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as comprehensive reference for the various mechanisms of action of melatonin against CRC, and as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Chew Hee Ng
- School of Pharmacy, International Medical University , Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Khuen Yen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Selangor , Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia , Phone: +6032731 7220; Fax: +60386567229
| |
Collapse
|
7
|
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst) 2018; 69:63-72. [PMID: 30075372 DOI: 10.1016/j.dnarep.2018.07.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kheyrollah
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
8
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
9
|
Rossi A, Moro A, Tebaldi T, Cornella N, Gasperini L, Lunelli L, Quattrone A, Viero G, Macchi P. Identification and dynamic changes of RNAs isolated from RALY-containing ribonucleoprotein complexes. Nucleic Acids Res 2017; 45:6775-6792. [PMID: 28379492 PMCID: PMC5499869 DOI: 10.1093/nar/gkx235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
RALY is a member of the heterogeneous nuclear ribonucleoprotein family (hnRNP), a large family of RNA-binding proteins involved in many aspects of RNA metabolism. Although RALY interactome has been recently characterized, a comprehensive global analysis of RALY-associated RNAs is lacking and the biological function of RALY remains elusive. Here, we performed RIP-seq analysis to identify RALY interacting RNAs and assessed the role of RALY in gene expression. We demonstrate that RALY binds specific coding and non-coding RNAs and associates with translating mRNAs of mammalian cells. Among the identified transcripts, we focused on ANXA1 and H1FX mRNAs, encoding for Annexin A1 and for the linker variant of the histone H1X, respectively. Both proteins are differentially expressed by proliferating cells and are considered as markers for tumorigenesis. We demonstrate that cells lacking RALY expression exhibit changes in the levels of H1FX and ANXA1 mRNAs and proteins in an opposite manner. We also provide evidence for a direct binding of RALY to the U-rich elements present within the 3΄UTR of both transcripts. Thus, our results identify RALY as a poly-U binding protein and as a regulator of H1FX and ANXA1 in mammalian cells.
Collapse
Affiliation(s)
- Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Albertomaria Moro
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Nicola Cornella
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR-Italian National Council for Research, via Sommarive 18, 38123 Trento (TN), Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| |
Collapse
|
10
|
M 4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/mTOR pathway. Life Sci 2017; 185:63-72. [PMID: 28751160 DOI: 10.1016/j.lfs.2017.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
AIMS The aim of this work was to examine the antitumor effects and mechanisms of M4IDP, a zoledronic acid derivative, on human colorectal cancer (CRC) HCT116 cells. MAIN METHODS The effects of M4IDP on proliferation, cell cycle and ROS production were determined by CCK-8 and flow cytometry assays. Annexin-V-FITC/PI, Hoechst 33258, MDC staining assays and Ad-mCherry-GFP-LC3B fluorescence assay were performed to investigate apoptosis and autophagy. The effects of M4IDP on the induction of ER stress as well as the expression of cell cycle, apoptosis and autophagy-related proteins were analyzed by western blot assay. KEY FINDINGS M4IDP exhibited strong and sustained inhibitory effect on the growth of HCT116 cells. G1 arrest caused by M4IDP might be attributed to the enhancement of p27 and reduction of cyclin D1 expression. Proper-time treatment of M4IDP activated autophagy and promoted autophagic flux, while long-time treatment might inhibit the autophagic degradation and undermine the autophagy. M4IDP-induced apoptosis and autophagy were related to the ROS production and subsequent ER stress. M4IDP treatment increased the expression of PTEN, inhibited the phosphorylation of PDK1, Akt, mTOR, p70S6K, and increased the phosphorylation of GSK-3β and Bad, suggesting that the inhibition of PI3K/Akt/mTOR pathway might be involved in the antitumor activities of M4IDP. SIGNIFICANCE Our study indicates the antitumor properties of M4IDP and its potential clinical use in CRC therapy by blocking PI3K/Akt/mTOR pathway. This study also provides a better understanding of the antitumor effects and the underlying mechanisms of bisphosphonates in the field of CRC therapy.
Collapse
|
11
|
SCFFbl12 Increases p21Waf1/Cip1 Expression Level through Atypical Ubiquitin Chain Synthesis. Mol Cell Biol 2016; 36:2182-94. [PMID: 27215384 DOI: 10.1128/mcb.00174-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21 is an unstructured protein regulated by multiple turnover pathways. p21 abundance is tightly regulated, and its defect causes tumor development. However, the mechanisms that underlie the control of p21 level are not fully understood. Here, we report a novel mechanism by which a component of the SCF ubiquitin ligase, Fbl12, augments p21 via the formation of atypical ubiquitin chains. We found that Fbl12 binds and ubiquitinates p21. Unexpectedly, Fbl12 increases the expression level of p21 by enhancing the mixed-type ubiquitination, including not only K48- but also K63-linked ubiquitin chains, followed by promotion of binding between p21 and CDK2. We also found that proteasome activator PA28γ attenuates p21 ubiquitination by interacting with Fbl12. In addition, UV irradiation induces a dissociation of p21 from Fbl12 and decreases K63-linked ubiquitination, leading to p21 degradation. These data suggest that Fbl12 is a key factor that maintains adequate intracellular concentration of p21 under normal conditions. Our finding may provide a novel possibility that p21's fate is governed by diverse ubiquitin chains.
Collapse
|
12
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
13
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
14
|
Tsuruta F, Kim J, Fukuda T, Kigoshi Y, Chiba T. The intronic region of Fbxl12 functions as an alternative promoter regulated by UV irradiation. Biochem Biophys Rep 2015; 3:100-107. [PMID: 29124172 PMCID: PMC5668677 DOI: 10.1016/j.bbrep.2015.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/28/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin ligases, SCF complexes, consist of Cul1, Skp1, Rbx1 and the substrate recognition components F-box proteins. Previous studies have reported that one of these F-box proteins, Fbl12, which is produced by Fbxl12 gene, regulates both cell cycle and differentiation. In this paper, we show that the intronic region of Fbxl12 gene acts as an alternative promoter and induces expression of a short form of Fbl12 that lacks F-box domain (Fbl12ΔF). We also found that UV irradiation increases Fbl12ΔF mRNA in cells. Finally, Fbl12ΔF may promote the subcellular localization of Fbl12 from nucleus to cytoplasm through their binding. Our data provide the possibility that Fbl12ΔF induced by alternative promoter controls the SCFFbl12 activity in response to UV stimulation.
Collapse
Affiliation(s)
- Fuminori Tsuruta
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jaehyun Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomomi Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yu Kigoshi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Roy A, Banerjee S. p27 and Leukemia: Cell Cycle and Beyond. J Cell Physiol 2014; 230:504-9. [PMID: 25205053 DOI: 10.1002/jcp.24819] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Anita Roy
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata West Bengal India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata West Bengal India
| |
Collapse
|
16
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|