1
|
Wang S, Huang H, Hu X, Xiao M, Yang K, Bu H, Jiang Y, Huang Z. A Novel Amino Acid-Related Gene Signature Predicts Overall Survival in Patients With Hepatocellular Carcinoma. Cancer Rep (Hoboken) 2024; 7:e2131. [PMID: 39041652 PMCID: PMC11264112 DOI: 10.1002/cnr2.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is an extremely harmful malignant tumor in the world. Since the energy metabolism and biosynthesis of HCC cells are closely related to amino acids, it is necessary to further explore the relationship between amino acid-related genes and the prognosis of HCC to achieve individualized treatment. We herein aimed to develop a prognostic model for HCC based on amino acid genes. METHODS In this study, RNA-sequencing data of HCC patients were downloaded from the TCGA-LIHC cohort as the training cohort and the GSE14520 cohort as the validation cohort. Amino acid-related genes were derived from the Molecular Signatures Database. Univariate Cox and Lasso regression analysis were used to construct an amino acid-related signature (AARS). The predictive value of this risk score was evaluated by Kaplan-Meier (K-M) curve, receiver operating characteristic (ROC) curve, univariate and multivariate Cox regression analysis. Gene set variation analysis (GSVA) and immune characteristics evaluation were used to explore the underlying mechanisms. Finally, a nomogram was established to help the personalized prognosis assessment of patients with HCC. RESULTS The AARS comprises 14 amino acid-related genes to predict overall survival (OS) in HCC patients. HCC patients were divided into AARS-high group and AARS-low group according to the AARS scores. The K-M curve, ROC curve, and univariate and multivariate Cox regression analysis verified the good prediction efficiency of the risk score. Using GSVA, we found that AARS variants were concentrated in four pathways, including cholesterol metabolism, delayed estrogen response, fatty acid metabolism, and myogenesis metabolism. CONCLUSION Our results suggest that the AARS as a prognostic model based on amino acid-related genes is of great value in the prediction of survival of HCC, and can help improve the individualized treatment of patients with HCC.
Collapse
Affiliation(s)
- Shuyi Wang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | | | - Xingwang Hu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Meifang Xiao
- Department of Health Management CenterXiangya Hospital, Central South UniversityChangshaChina
| | - Kaili Yang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Haiyan Bu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yupeng Jiang
- Department of OncologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Zebing Huang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Liu Y, Tang Y, Jiang H, Zhang X, Chen X, Guo J, Jin C, Wu M. Exosome-Related FTCD Facilitates M1 Macrophage Polarization and Impacts the Prognosis of Hepatocellular Carcinoma. Biomolecules 2023; 14:41. [PMID: 38254641 PMCID: PMC10813691 DOI: 10.3390/biom14010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Exosomes are essential for hepatocellular carcinoma (HCC) progression and have garnered significant interest as novel targets for diagnostic, prognostic, and therapeutic approaches. This study aims to identify potential exosome-related biomarkers for the development of useful strategies for HCC diagnosis and therapy. METHODS Three datasets obtained from the Gene Expression Omnibus (GEO) were utilized to identify differentially expressed genes (DEGs) in HCC. Through Gene Ontology (GO) analysis and protein-protein interaction (PPI) network, overall survival (OS) analysis, Cox analyses, and diethylnitrosamine (DEN)-induced HCC mouse model detection, exosome-related hub gene was screened out, followed by a prognostic value assessment and immune-correlates analysis based on the Cancer Genome Atlas (TCGA) dataset. The hub gene-containing exosomes derived from Hepa1-6 cells were isolated and characterized using differential ultracentrifugation, transmission electron microscopy scanning, and Western blot. Ultrasound-guided intrahepatic injection, cell co-culture, CCK-8, and flow cytometry were performed to investigate the effects of the hub gene on macrophage infiltration and polarization in HCC. RESULTS A total of 83 DEGs enriched in the extracellular exosome term, among which, FTCD, HRA, and C8B showed the strongest association with the progression of HCC. FTCD was independently associated with a protective effect in HCC and selected as the hub gene. The presence of FTCD in exosomes was confirmed. FTCD-stimulated macrophages were polarized towards the M1 type and suppressed HCC cells proliferation. CONCLUSIONS FTCD is a potential exosome-related biomarker for HCC diagnosis, prognosis, and treatment. The crosstalk between FTCD-containing exosomes and macrophages in HCC progression deserves further investigation.
Collapse
Affiliation(s)
- Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| | - Yifei Tang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| | - Hongliang Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| | - Xiading Zhang
- Wuxi Higher Health Vocational Technology School, Wuxi 214000, China;
| | - Xingyi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| | - Jingrou Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214041, China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.L.); (Y.T.); (H.J.); (X.C.); (J.G.)
| |
Collapse
|
3
|
Liu X, Tang N, Liu Y, Fu J, Zhao Y, Wang H, Wang H, Hu Z. FOXK2 regulates PFKFB3 in promoting glycolysis and tumorigenesis in multiple myeloma. Leuk Res 2023; 132:107343. [PMID: 37356282 DOI: 10.1016/j.leukres.2023.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Forkhead box K2 (FOXK2) is a transcription factor involved in regulating the pathophysiological processes in many types of cancers. Functioning as either an oncogene or tumor suppressor, FOXK2 is involved in cell proliferation, metastasis, DNA damage, metabolism, and autophagy. However, the functions of FOXK2 in multiple myeloma (MM) are still unexplored. Here we show that FOXK2 silencing by small interfering RNA (siRNA) prevented the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) via dephosphorylation of an AMP-activated protein kinase (AMPK). Consistently, suppression of FOXK2 inhibited glycolysis and cell proliferation in MM cells. Furthermore, the correlation between FOXK2 expression and disease progression in MM was evaluated using the TCGA (The Cancer Genome Atlas) database. Taken together, we identified a novel FOXK2-dependent signaling pathway involved in the regulation of PFKFB3 expression in response to glycolysis, which might serve as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China
| | - Na Tang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China; Graduate School, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yong Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China
| | - Jieting Fu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China
| | - Yao Zhao
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China
| | - Haihua Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China
| | - Haiying Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China.
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, China.
| |
Collapse
|
4
|
Liu J, Zhang SQ, Chen J, Li ZB, Chen JX, Lu QQ, Han YS, Dai W, Xie C, Li JC. Identifying Prognostic Significance of RCL1 and Four-Gene Signature as Novel Potential Biomarkers in HCC Patients. JOURNAL OF ONCOLOGY 2021; 2021:5574150. [PMID: 34257652 PMCID: PMC8260302 DOI: 10.1155/2021/5574150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. METHODS The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). RESULTS The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7-0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. CONCLUSION Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shan-Qiang Zhang
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jia-Xi Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Qi-Qi Lu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenjie Dai
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Chongwei Xie
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Ji-Cheng Li
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
A Novel Seventeen-Gene Metabolic Signature for Predicting Prognosis in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4845360. [PMID: 33282950 PMCID: PMC7685801 DOI: 10.1155/2020/4845360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
A metabolic disorder is considered one of the hallmarks of cancer. Multiple differentially expressed metabolic genes have been identified in colon cancer (CC), and their biological functions and prognostic values have been well explored. The purpose of the present study was to establish a metabolic signature to optimize the prognostic prediction in CC. The related data were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) database, and Gene Expression Omnibus (GEO) combined with GSE39582 set, GSE17538 set, GSE33113 set, and GSE37892 set. The differentially expressed metabolic genes were selected for univariate Cox regression and lasso Cox regression analysis using TCGA and GTEx datasets. Finally, a seventeen-gene metabolic signature was developed to divide patients into a high-risk group and a low-risk group. Patients in the high-risk group presented poorer prognosis compared to the low-risk group in both TCGA and GEO datasets. Moreover, gene set enrichment analyses demonstrated multiple significantly enriched metabolism-related pathways. To sum up, our study described a novel seventeen-gene metabolic signature for prognostic prediction of colon cancer.
Collapse
|
6
|
Lu C, Ren C, Yang T, Sun Y, Qiao P, Wang D, Lv S, Yu Z. A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer. Mol Cancer Res 2020; 18:787-796. [PMID: 32041737 DOI: 10.1158/1541-7786.mcr-19-0842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer. IMPLICATIONS: We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
7
|
Identification of Hub Genes and Analysis of Prognostic Values in Hepatocellular Carcinoma by Bioinformatics Analysis. Am J Med Sci 2020; 359:226-234. [PMID: 32200915 DOI: 10.1016/j.amjms.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most frequent cancers in the world. In this study, differentially expressed genes (DEGs) between tumor tissues and normal tissues were identified using the comprehensive analysis method in bioinformatics. MATERIALS AND METHODS We downloaded 3 mRNA expression profiles from the Gene Expression Omnibus database to identify DEGs between tumor tissues and adjacent normal tissues. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein-protein interaction network was performed to understand the function of DEGs. OncoLnc, which was linked to The Cancer Genome Atlas survival data, was used to investigate the prognostic values of hub genes. The expression of selected hub genes was validated by the quantitative real-time polymerase chain reaction. RESULTS A total of 235 DEGs, consisting of 36 upregulated and 199 downregulated genes, were identified between tumor tissue and normal tissue. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis results showed the upregulated DEGs to be significantly enriched in cell division, mid-body, ATP binding and oocyte meiosis pathways. The downregulated DEGs were mainly involved in epoxygenase P450 pathway, extracellular region, oxidoreductase activity and metabolic pathways. Ten hub genes, including Aurora kinase A, Cell division cycle 20, formiminotransferase cyclodeaminase, UBE2C, Cyclin B2, pituitary tumor-transforming gene 1, CDKN3, CKS1B, Topoisomerase-II alpha and KIF20A, were identified as the key genes in HCC. Survival analysis found the expression of hub genes to be significantly correlated with the survival of patients with HCC. CONCLUSIONS The present study identified hub genes and pathways in HCC that may be potential targets for diagnosis, treatment and prognostic prediction.
Collapse
|
8
|
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res 2019; 79:5233-5244. [PMID: 31409638 DOI: 10.1158/0008-5472.can-19-0063] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is the master regulator of the proteotoxic stress response, which plays a key role in breast cancer tumorigenesis. However, the mechanisms underlying regulation of HSF1 protein stability are still unclear. Here, we show that HSF1 protein stability is regulated by PIM2-mediated phosphorylation of HSF1 at Thr120, which disrupts the binding of HSF1 to the E3 ubiquitin ligase FBXW7. In addition, HSF1 Thr120 phosphorylation promoted proteostasis and carboplatin-induced autophagy. Interestingly, HSF1 Thr120 phosphorylation induced HSF1 binding to the PD-L1 promoter and enhanced PD-L1 expression. Furthermore, HSF1 Thr120 phosphorylation promoted breast cancer tumorigenesis in vitro and in vivo. PIM2, pThr120-HSF1, and PD-L1 expression positively correlated with each other in breast cancer tissues. Collectively, these findings identify PIM2-mediated HSF1 phosphorylation at Thr120 as an essential mechanism that regulates breast tumor growth and potential therapeutic target for breast cancer. SIGNIFICANCE: These findings identify heat shock transcription factor 1 as a new substrate for PIM2 kinase and establish its role in breast tumor progression.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
9
|
Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, Meng Y, Liu Z, Du Y, Yu Z. Negative regulation of AMPKα1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene 2019; 38:6537-6549. [PMID: 31358902 DOI: 10.1038/s41388-019-0898-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 04/16/2019] [Indexed: 01/07/2023]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies. However, the molecular mechanisms underlying the development and progression of EC remain unclear. Here, we demonstrated that the protein proviral insertion in murine lymphomas 2 (PIM2) was necessary for maintaining EC tumorigenesis in vivo and in vitro, and could inhibit AMPKα1 kinase activity in EC cells. Specifically, we found that PIM2 bound to AMPKα1, and directly phosphorylated it on Thr467. Phosphorylation of AMPKα1 by PIM2 led to decreasing AMPKα1 kinase activity, which in turn promoted aerobic glycolysis and tumor growth. In addition, PIM2 expression positively correlated with AMPKα1 Thr467 phosphorylation in EC tissues. Further, treatment with a combination of the PIM2 inhibitor SMI-4a and the AMPKα1 activator AICAR could effectively inhibit tumor growth. Thus, our findings provide insight into the role of PIM2 and AMPKα1 in EC and suggest that combination targeting of these proteins may represent a new strategy for EC treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Yuhan Meng
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Yu Du
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
10
|
Chen J, Chen Z, Huang Z, Yu H, Li Y, Huang W. Formiminotransferase Cyclodeaminase Suppresses Hepatocellular Carcinoma by Modulating Cell Apoptosis, DNA Damage, and Phosphatidylinositol 3-Kinases (PI3K)/Akt Signaling Pathway. Med Sci Monit 2019; 25:4474-4484. [PMID: 31203308 PMCID: PMC6592141 DOI: 10.12659/msm.916202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Formiminotransferase cyclodeaminase (FTCD) is a candidate tumor suppressor gene in hepatocellular carcinoma (HCC). However, the mechanism for reduced expression of FTCD and its functional role in HCC remains unclear. In this study, we explored the biological functions of FTCD in HCC. Material/Methods The expression and clinical correlation of FTCD in HCC tissue were analyzed using TCGA (The Cancer Genome Atlas) and a cohort of 60 HCC patients. The MEXPRESS platform was accessed to identify the methylation level in promoter region FTCD. CCK-8 assay and flow cytometry analysis were used to explore the proliferation, cell apoptosis proportion, and DNA damage in HCC cells with FTCD overexpression. Western blot analysis was performed to identify the downstream target of FTCD. Results FTCD is significantly downregulated in HCC tissues and cell lines. Low FTCD expression is correlated with a poor prognosis (P<0.001) and an aggressive tumor phenotype, including AFP levels (P=0.009), tumor size (P=0.013), vascular invasion (P=0.001), BCLC stage (P=0.024), and pTNM stage (P<0.001). Bioinformatics analysis indicated promoter hypermethylation can result in decreased expression of FTCD. FTCD overexpression suppressed cell proliferation by promoting DNA damage and inducing cell apoptosis in HCC cells. FTCD overexpression resulted in increased level of PTEN protein, but a decrease in PI3K, total Akt, and phosphorylated Akt protein in HCC cells, suggesting involvement of the PI3K/Akt pathway. Conclusions FTCD acts as a tumor suppressor gene in HCC pathogenesis and progression and is a candidate prognostic marker and a possible therapeutic target for this disease.
Collapse
Affiliation(s)
- Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of General Surgery, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zemian Chen
- Department of Medical Oncology, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland)
| | - Zhentian Huang
- Department of General Surgery, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland)
| | - Hongrong Yu
- Department of Human Anatomy, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
11
|
PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 2018; 37:5997-6009. [PMID: 29985480 PMCID: PMC6224402 DOI: 10.1038/s41388-018-0386-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Hexokinase-II (HK2) is a key enzyme involved in glycolysis, which is required for breast cancer progression. However, the underlying post-translational mechanisms of HK2 activity are poorly understood. Here, we showed that Proviral Insertion in Murine Lymphomas 2 (PIM2) directly bound to HK2 and phosphorylated HK2 on Thr473. Biochemical analyses demonstrated that phosphorylated HK2 Thr473 promoted its protein stability through the chaperone-mediated autophagy (CMA) pathway, and the levels of PIM2 and pThr473-HK2 proteins were positively correlated with each other in human breast cancer. Furthermore, phosphorylation of HK2 on Thr473 increased HK2 enzyme activity and glycolysis, and enhanced glucose starvation-induced autophagy. As a result, phosphorylated HK2 Thr473 promoted breast cancer cell growth in vitro and in vivo. Interestingly, PIM2 kinase inhibitor SMI-4a could abrogate the effects of phosphorylated HK2 Thr473 on paclitaxel resistance in vitro and in vivo. Taken together, our findings indicated that PIM2 was a novel regulator of HK2, and suggested a new strategy to treat breast cancer.
Collapse
|
12
|
Ren C, Yang T, Qiao P, Wang L, Han X, Lv S, Sun Y, Liu Z, Du Y, Yu Z. PIM2 interacts with tristetraprolin and promotes breast cancer tumorigenesis. Mol Oncol 2018; 12:690-704. [PMID: 29570932 PMCID: PMC5928357 DOI: 10.1002/1878-0261.12192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/03/2023] Open
Abstract
Tristetraprolin (TTP) is an AU‐rich element‐binding protein that regulates mRNA stability and plays important roles in cancer. The mechanisms by which TTP is regulated in breast cancer are poorly understood. Using multiple biochemical approaches, we found that proviral insertion in murine lymphomas 2 (PIM2) is a novel binding partner of TTP. Interestingly, PIM2 decreased TTP protein levels independent of its kinase activity. PIM2 instead targeted TTP protein for degradation via the ubiquitin‐proteasome pathway. Furthermore, immunohistochemical staining showed that PIM2 and TTP protein levels were negatively correlated in human breast cancer samples. Indeed, PIM2 overexpression de‐repressed TTP‐mediated inhibition of breast cancer cell proliferation and migration in vitro and promoted breast tumor xenograft growth in vivo. These findings demonstrate an important role for the PIM2‐TTP complex in breast cancer tumorigenesis, suggesting that PIM2 may represent a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Chune Ren
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Tingting Yang
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Pengyun Qiao
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Li Wang
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Xue Han
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Shijun Lv
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Yonghong Sun
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityShandongChina
| | - Zhijun Liu
- Department of Medical BiologyWeifang Medical UniversityShandongChina
| | - Yu Du
- Department of Medical BiologyWeifang Medical UniversityShandongChina
| | - Zhenhai Yu
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityShandongChina
| |
Collapse
|
13
|
Yu Z, Huang L, Qiao P, Jiang A, Wang L, Yang T, Tang S, Zhang W, Ren C. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem Biophys Res Commun 2016; 473:953-958. [PMID: 27045080 DOI: 10.1016/j.bbrc.2016.03.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023]
Abstract
Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Zhenhai Yu
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China.
| | - Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Pengyun Qiao
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Aifang Jiang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Li Wang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Tingting Yang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Shengjian Tang
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, China
| | - Wei Zhang
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, China
| | - Chune Ren
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China.
| |
Collapse
|
14
|
Huang L, Yu Z, Zhang Z, Ma W, Song S, Huang G. Interaction with Pyruvate Kinase M2 Destabilizes Tristetraprolin by Proteasome Degradation and Regulates Cell Proliferation in Breast Cancer. Sci Rep 2016; 6:22449. [PMID: 26926077 PMCID: PMC4772106 DOI: 10.1038/srep22449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/17/2016] [Indexed: 12/29/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), which is predominantly expressed in most cancers, plays a key role in the Warburg effect. However, how PKM2 functions as a tumor supportive protein has not been fully elucidated. Here, we identified tristetraprolin (TTP), an AU-rich, element-binding protein that regulates mRNA stability, as a new binding partner of PKM2. Our data reveal that PKM2 suppresses TTP protein levels by promoting its phosphorylation, ubiquitination, and proteasome degradation, reducing its mRNA turnover ability and ultimately impairing cell viability in breast cancer cells. The p38/mitogen-activated protein kinase (MAPK) pathway might be involved in PKM2-mediated TTP degradation, while treatment with the p38 inhibitor or siRNA abolished PKM2-induced TTP protein degradation. These findings demonstrate that PKM2-TTP association is crucial for regulating breast cancer cell proliferation and is therefore a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenhai Yu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenchao Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Wenjing Ma
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
15
|
Zhou X, Chen R, Yu Z, Li R, Li J, Zhao X, Song S, Liu J, Huang G. Dichloroacetate restores drug sensitivity in paclitaxel-resistant cells by inducing citric acid accumulation. Mol Cancer 2015; 14:63. [PMID: 25888721 PMCID: PMC4379549 DOI: 10.1186/s12943-015-0331-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The Warburg effect describes the increased reliance of tumor cells on glycolysis for ATP generation. Mitochondrial respiratory defect is thought to be an important factor leading to the Warburg effect in some types of tumor cells. Consequently, there is growing interest in developing anti-cancer drugs that target mitochondria. One example is dichloroacetate (DCA) that stimulates mitochondria through inhibition of pyruvate dehydrogenase kinase. METHODS We investigated the anti-cancer activity of DCA using biochemical and isotopic tracing methods. RESULTS We observed that paclitaxel-resistant cells contained decreased levels of citric acid and sustained mitochondrial respiratory defect. DCA specifically acted on cells with mitochondrial respiratory defect to reverse paclitaxel resistance. DCA could not effectively activate oxidative respiration in drug-resistant cells, but induced higher levels of citrate accumulation, which led to inhibition of glycolysis and inactivation of P-glycoprotein. CONCLUSIONS The abilityof DCA to target cells with mitochondrial respiratory defect and restore paclitaxel sensitivity by inducing citrate accumulation supports further preclinical development.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Zhenhai Yu
- School of biomedical engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Rui Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China. .,Department of Cancer Metabolism, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zhou X, Chen R, Xie W, Ni Y, Liu J, Huang G. Relationship between 18F-FDG accumulation and lactate dehydrogenase A expression in lung adenocarcinomas. J Nucl Med 2014; 55:1766-71. [PMID: 25342384 DOI: 10.2967/jnumed.114.145490] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED (18)F-FDG PET has been widely used in the management of malignant tumors. Lactate dehydrogenase A (LDHA) plays an important role in the development, invasion, and metastasis of malignancies. However, the relationship between (18)F-FDG accumulation and LDHA expression has not been investigated. METHODS Retrospective analysis was conducted for 51 patients with lung adenocarcinomas who underwent (18)F-FDG PET. The relationship between maximum standardized uptake value and the expression of LDHA, glucose transporter 1 (GLUT1), and hexokinase 2 (HK2) were examined. RNA interference was used to analyze the role of LDHA in tumor metabolism and growth in A549 cells. The AKT, also known as protein kinase B, pathway was also investigated to evaluate the molecular mechanisms of the relationship between LDHA expression and (18)F-FDG uptake. RESULTS Maximum standardized uptake value was significantly higher in the LDHA high-expression group than the LDHA low-expression group (P = 0.018). GLUT1 expression in lung adenocarcinomas was positively correlated with (18)F-FDG accumulation and LDHA expression whereas HK2 expression was not. Knockdown of LDHA led to a significant decrease in GLUT1 expression, (18)F-FDG uptake, and cell proliferation. The activated form of AKT was also decreased after LDHA knockdown. CONCLUSION LDHA increases (18)F-FDG accumulation into non-small cell lung cancer, possibly by upregulation of GLUT1 expression but not HK2 expression. LDHA may modulate (18)F-FDG uptake in lung adenocarcinomas via the AKT-GLUT1 pathway. These results indicate that (18)F-FDG PET/CT may predict LDHA expression levels and response to anti-LDHA therapy in lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Ni
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Belgium; and
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China Department of Cancer Metabolism, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|