1
|
Fukasawa T, Yoshizaki-Ogawa A, Enomoto A, Yamashita T, Miyagawa K, Sato S, Yoshizaki A. Single cell analysis in systemic sclerosis - A systematic review. Immunol Med 2024; 47:118-129. [PMID: 38818750 DOI: 10.1080/25785826.2024.2360690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
In recent years, rapid advances in research methods have made single cell analysis possible. Systemic sclerosis (SSc), a disease characterized by the triad of immune abnormalities, fibrosis, and vasculopathy, has also been the subject of various analyses. To summarize the results of single cell analysis in SSc accumulated to date and to deepen our understanding of SSc. Four databases were used to perform a database search on 23rd June 2023. Assessed Grading of Recommendations Assessment, Development and Evaluation certainty of evidence were performed according to PRISMA guidelines. The analysis was completed on July 2023. 17 studies with 358 SSc patients were included. Three studies used PBMCs, six used skin, nine used lung with SSc-interstitial lung diseases (ILDs), and one used lung with SSc-pulmonary arterial hypertension (PAH). The cells studied included immune cells such as T cells, natural killer cells, monocytes, macrophages, and dendritic cells, as well as endothelial cells, fibroblasts, keratinocytes, alveolar type I cells, basal epithelial cells, smooth muscle cells, mesothelial cells, etc. This systematic review revealed the results of single cell analysis, suggesting that PBMCs, skin, SSc-ILD, and SSc-PAH show activation and dysfunction of cells associated with immune-abnormalities, fibrosis, and vasculopathy, respectively.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Fukasawa T, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. The role of B cells in systemic sclerosis. J Dermatol 2024; 51:904-913. [PMID: 38321641 DOI: 10.1111/1346-8138.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Systemic sclerosis (SSc) is a rare and refractory systemic disease characterized by fibrosis and vasculopathy in the presence of autoimmune abnormalities. While the exact cause of SSc is incompletely understood, the specific autoantibodies identified in SSc are closely linked to disease severity and prognosis, indicating a significant role of autoimmune abnormalities in the pathogenesis of SSc. Although the direct pathogenic mechanisms of autoantibodies in SSc are not fully elucidated, numerous prior investigations have demonstrated the involvement of B cells in the pathogenesis of SSc through various mechanisms. Additionally, several clinical trials have explored the efficacy of B-cell depletion therapy for SSc, with many reporting positive outcomes. However, the role of B cells in SSc pathogenesis is multifaceted, as they can both promote inflammation and exert inhibitory functions. This article provides an overview of the involvement of B cells in SSc development, incorporating the latest research findings.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Hou S, Ma J, Cheng Y, Wang Z, Wang H, Sun JH, Wang G, Jia A, Yan YX. Protective Mechanisms of Various Active Substances on Cell DNA Damage and Apoptosis Induced by Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6651-6659. [PMID: 38501756 DOI: 10.1021/acs.jafc.3c09100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite of fungi that is harmful to humans and animals. This study examined the protective effects of natural substances, including resveratrol, quercetin, vitamin E, vitamin C, and microbe-derived antioxidants (MA), on both human gastric mucosal cells (GES-1) and pig small intestinal epithelial cells (IPEC-1) when induced by DON. Cells were incubated with active substances for 3 h and then exposed to DON for 24 h. The oxidative stress index, cell cycle, and apoptosis were measured. As compared to cells treated only with DON, pretreatment with active substances improved the balance of the redox status in cells caused by DON. Specifically, quercetin, vitamin E, vitamin C, and MA showed the potential to alleviate the G2 phase cell cycle arrest effect that was induced by DON in both kinds of cells. It was observed that vitamin E and vitamin C can alleviate DON-induced apoptosis and the G2 phase cycle arrest effect mediated via the ATM-Chk 2-Cdc 25C and ATM-P53 signaling pathways in GES-1 cells. In IPEC-1 cells, vitamin C and MA can alleviate both DON-induced apoptosis and the G2 phase cycle arrest effect via the ATM-Chk 2-Cdc 25C signaling pathway. Different bioactive substances utilize different protective mechanisms against DON in interacting with different cells. The proper addition of vitamin E and vitamin C to food can neutralize the toxic effect of DON, while the addition of vitamin C and MA to animal feed can reduce the harm DON does to animals.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Demonstration Center of Food Quality and Safety Testing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Jian-He Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Guiping Wang
- Guangdong Haid Group Co. Limited, Guangzhou, Guangdong 511400, China
| | - Aiqing Jia
- Guangdong Haid Group Co. Limited, Guangzhou, Guangdong 511400, China
| | - Ya-Xian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Fukasawa T, Enomoto A, Yoshizaki-Ogawa A, Sato S, Miyagawa K, Yoshizaki A. The Role of Mammalian STK38 in DNA Damage Response and Targeting for Radio-Sensitization. Cancers (Basel) 2023; 15:cancers15072054. [PMID: 37046714 PMCID: PMC10093458 DOI: 10.3390/cancers15072054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Protein kinases, found in the nucleus and cytoplasm, play essential roles in a multitude of cellular processes, including cell division, proliferation, apoptosis, and signal transduction. STK38 is a member of the protein kinase A (PKA)/PKG/PKC family implicated in regulating cell division and morphogenesis in yeast and C. elegans. However, its function remained largely unknown in mammals. In recent years, advances in research on STK38 and the identification of its substrates has led to a better understanding of its function and role in mammals. This review discusses the structure, expression, and regulation of activity as a kinase, its role in the DNA damage response, cross-talk with other signaling pathways, and its application for radio-sensitization.
Collapse
|
5
|
Enomoto A, Fukasawa T. The role of calcium-calpain pathway in hyperthermia. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1005258. [PMID: 39086981 PMCID: PMC11285567 DOI: 10.3389/fmmed.2022.1005258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 08/02/2024]
Abstract
Hyperthermia is a promising anticancer treatment modality. Heat stress stimulates proteolytic machineries to regulate cellular homeostasis. Calpain, an intracellular calcium (Ca2+)-dependent cysteine protease, is a modulator that governs various cellular functions. Hyperthermia induces an increase in cytosolic Ca2+ levels and triggers calpain activation. Contrastingly, pre-exposure of cells to mild hyperthermia induces thermotolerance due to the presence of cellular homeostatic processes such as heat shock response and autophagy. Recent studies suggest that calpain is a potential key molecule that links autophagy and apoptosis. In this review, we briefly introduce the regulation of intracellular Ca2+ homeostasis, basic features of calpains with their implications in cancer, immune responses, and the roles and cross-talk of calpains in cellular protection and cell death in hyperthermia.
Collapse
Affiliation(s)
- Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takemichi Fukasawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Fukasawa T, Yoshizaki-Ogawa A, Enomoto A, Miyagawa K, Sato S, Yoshizaki A. Pharmacotherapy of Itch-Antihistamines and Histamine Receptors as G Protein-Coupled Receptors. Int J Mol Sci 2022; 23:6579. [PMID: 35743023 PMCID: PMC9223628 DOI: 10.3390/ijms23126579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Itching can decrease quality of life and exacerbate skin symptoms due to scratching. Itching not only contributes to disease progression but also triggers complications such as skin infections and eye symptoms. Therefore, controlling itching is very important in therapeutic management. In addition to the well-known histamine, IL-31, IL-4 and IL-13 have recently been reported as factors that induce itching. Itching may also be caused by factors other than these histamines. However, we do not know the extent to which these factors are involved in each disease. In addition, the degree of involvement is likely to vary among individuals. To date, antihistamines have been widely used to treat itching and are often effective, suggesting that histamine is more or less involved in itchy diseases. This review discusses the ligand-receptor perspective and describes the dynamics of G protein-coupled receptors, their role as biased agonists, their role as inverse agonists, proactive antihistamine therapy, and drug selection with consideration of impaired performance and anti-PAF effects.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| |
Collapse
|
7
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
8
|
Gundogdu R, Erdogan MK, Ditsiou A, Spanswick V, Garcia-Gomez JJ, Hartley JA, Esashi F, Hergovich A, Gomez V. hMOB2 deficiency impairs homologous recombination-mediated DNA repair and sensitises cancer cells to PARP inhibitors. Cell Signal 2021; 87:110106. [PMID: 34363951 PMCID: PMC8514680 DOI: 10.1016/j.cellsig.2021.110106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Department of Biology, Bingol University, Bingol 12000, Turkey; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| | - M Kadir Erdogan
- Department of Biology, Bingol University, Bingol 12000, Turkey
| | - Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton BN1 9QG, UK; UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | | | | | - John A Hartley
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, London WC1E 6DD, UK; Evotec France, Toulouse 31100, France
| | - Valenti Gomez
- UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
9
|
Martin AP, Aushev VN, Zalcman G, Camonis JH. The STK38-XPO1 axis, a new actor in physiology and cancer. Cell Mol Life Sci 2021; 78:1943-1955. [PMID: 33145612 PMCID: PMC11072208 DOI: 10.1007/s00018-020-03690-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
The Hippo signal transduction pathway is an essential regulator of organ size during developmental growth by controlling multiple cellular processes such as cell proliferation, cell death, differentiation, and stemness. Dysfunctional Hippo signaling pathway leads to dramatic tissue overgrowth. Here, we will briefly introduce the Hippo tumor suppressor pathway before focusing on one of its members and the unexpected twists that followed our quest of its functions in its multifarious actions beside the Hippo pathway: the STK38 kinase. In this review, we will precisely discuss the newly identified role of STK38 on regulating the nuclear export machinery by phosphorylating and activating, the major nuclear export receptor XPO1. Finally, we will phrase STK38's role on regulating the subcellular distribution of crucial cellular regulators such as Beclin1 and YAP1 with its implication in cancer.
Collapse
Affiliation(s)
- Alexandre Pj Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA.
| | - Vasily N Aushev
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gérard Zalcman
- Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hopital Bichat-Claude-Bernard, Paris, France
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| |
Collapse
|
10
|
Nakao Y, Nakagawa S, Yamashita YI, Umezaki N, Okamoto Y, Ogata Y, Yasuda-Yoshihara N, Itoyama R, Yusa T, Yamashita K, Miyata T, Okabe H, Hayashi H, Imai K, Baba H. High ARHGEF2 (GEF-H1) Expression is Associated with Poor Prognosis Via Cell Cycle Regulation in Patients with Pancreatic Cancer. Ann Surg Oncol 2021; 28:4733-4743. [PMID: 33393038 DOI: 10.1245/s10434-020-09383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic cancer has an extremely poor prognosis, even after curative resection. Treatment options for pancreatic cancer remain limited, therefore new therapeutic targets are urgently needed. We searched for genes predictive of poor prognosis in pancreatic cancer using a public database and validated the survival impact of the selected gene in a patient cohort. METHODS We used a public database to search for genes associated with early pancreatic cancer recurrence. As a validation cohort, 201 patients who underwent radical resection in our institution were enrolled. Expression of the target gene was evaluated using immunohistochemistry (IHC). We evaluated growth and invasiveness using small interfering RNAs, then performed pathway analysis using gene set enrichment analysis. RESULTS We extracted ARHGEF2 from GSE21501 as a gene with a high hazard ratio (HR) for early recurrence within 1 year. The high ARHGEF2 expression group had significantly poorer recurrence-free survival (RFS) and poorer overall survival (OS) than the low ARHGEF2 expression group. Multivariate analysis demonstrated that high ARHGEF2 expression was an independent poor prognostic factor for RFS (HR 1.92) and OS (HR 1.63). In vitro, ARHGEF2 suppression resulted in reduced cell growth and invasiveness. Bioinformatic analysis revealed that ARHGEF2 expression was associated with MYC, G2M, E2F, and CDC25A expression, suggesting that c-Myc and cell cycle genes are associated with high ARHGEF2 expression. IHC revealed a positive correlation between ARHGEF2 and c-Myc expression. CONCLUSIONS High ARHGEF2 expression is associated with cell cycle progression, and predicts early recurrence and poor survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Umezaki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiko Yusa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
12
|
Martin APJ, Camonis JH. The hippo kinase STK38 ensures functionality of XPO1. Cell Cycle 2020; 19:2982-2995. [PMID: 33017560 PMCID: PMC7714482 DOI: 10.1080/15384101.2020.1826619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022] Open
Abstract
The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
13
|
Gao X, Wang Q, Wang Y, Liu J, Liu S, Liu J, Zhou X, Zhou L, Chen H, Pan L, Chen J, Wang D, Zhang Q, Shen S, Xiao Y, Wu Z, Cheng Y, Chen G, Kubra S, Qin J, Huang L, Zhang P, Wang C, Moses RE, Lonard DM, Malley BWO, Fares F, Zhang B, Li X, Li L, Xiao J. The REGγ inhibitor NIP30 increases sensitivity to chemotherapy in p53-deficient tumor cells. Nat Commun 2020; 11:3904. [PMID: 32764536 PMCID: PMC7413384 DOI: 10.1038/s41467-020-17667-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.
Collapse
Affiliation(s)
- Xiao Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Qingwei Wang
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ying Wang
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Jiang Liu
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Prk, NC, 27709, USA
| | - Xingli Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Li Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Da Wang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yu Xiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zhipeng Wu
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jun Qin
- The Joint Laboratory of Translational Medicine, National Center for Protein Sciences (Beijing) and Peking University Cancer Hospital, State Key Laboratory of Proteomics, Institute of Lifeomics, 102206, Beijing, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Pei Zhang
- Department of Pathology, The Second Chengdu Municipal Hospital, 610017, Chengdu, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O' Malley
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Fuad Fares
- Department of Human Biology. Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Xiaotao Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China.
| |
Collapse
|
14
|
Qin B, Yu J, Nowsheen S, Zhao F, Wang L, Lou Z. STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation. SCIENCE ADVANCES 2020; 6:eaax8214. [PMID: 32537488 PMCID: PMC7269669 DOI: 10.1126/sciadv.aax8214] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/10/2020] [Indexed: 05/11/2023]
Abstract
The ATM (ataxia-telangiectasia mutated) kinase is rapidly activated following DNA damage and phosphorylates its downstream targets to launch DDR signaling. Recently, we and others showed that UFM1 signaling promotes ATM activation. We further discovered that monoufmylation of histone H4 at Lys31 by UFM1-specific ligase 1 (UFL1) is an important step in the amplification of ATM activation. However, how monoufmylated H4 enhances ATM activation is still unknown. Here, we report STK38, a kinase in the Hippo pathway, serves as a reader for histone H4 ufmylation to promote ATM activation in a kinase-independent manner. STK38 contains a potential UFM1 binding motif which recognizes ufmylated H4 and recruits the SUV39H1 to the double-strand breaks, resulting in H3K9 trimethylation and Tip60 activation to promote ATM activation. Together, STK38 is a previously unknown player in DNA damage signaling and functions as a reader of monoufmylated H4 at Lys31 to promote ATM activation.
Collapse
Affiliation(s)
- Bo Qin
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Somaira Nowsheen
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding author.
| |
Collapse
|
15
|
Prevention of calpain-dependent degradation of STK38 by MEKK2-mediated phosphorylation. Sci Rep 2019; 9:16010. [PMID: 31690749 PMCID: PMC6831656 DOI: 10.1038/s41598-019-52435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Serine-threonine kinase 38 (STK38) is a member of the protein kinase A (PKA)/PKG/PKC-family implicated in the regulation of cell division and morphogenesis. However, the molecular mechanisms underlying STK38 stability remain largely unknown. Here, we show that treatment of cells with either heat or the calcium ionophore A23187 induced STK38 degradation. The calpain inhibitor calpeptin suppressed hyperthermia-induced degradation or the appearance of A23187-induced cleaved form of STK38. An in vitro cleavage assay was then used to demonstrate that calpain I directly cleaves STK38 at the proximal N-terminal region. Deletion of the N-terminal region of STK38 increased its stability against hyperthermia. We further demonstrated that the MAPKK kinase (MAP3K) MEKK2 prevented both heat- and calpain-induced cleavage of STK38. MEKK2 knockdown enhanced hyperthermia-induced degradation of STK38. We performed an in vitro MEKK2 assay and identified the key regulatory site in STK38 phosphorylated by MEKK2. Experiments with a phosphorylation-defective mutant demonstrated that phosphorylation of Ser 91 is important for STK38 stability, as the enzyme is susceptible to degradation by the calpain pathway unless this residue is phosphorylated. In summary, we demonstrated that STK38 is a calpain substrate and revealed a novel role of MEKK2 in the process of STK38 degradation by calpain.
Collapse
|
16
|
Abstract
Ciclopirox olamine (CPX), an off-patent fungicide, has recently been identified as a novel anticancer agent. However, the molecular mechanism underlying its anticancer action remains to be elucidated. Here we show that CPX inhibits cell proliferation in part by downregulating the protein level of Cdc25A in tumor cells. Our studies revealed that CPX did not significantly reduce Cdc25A mRNA level or Cdc25A protein synthesis, but remarkably promoted Cdc25A protein degradation. This resulted in inhibition of G1-cyclin dependent kinases (CDKs), as evidenced by increased inhibitory phosphorylation of G1-CDKs. Since Cdc25A degradation is tightly related to its phosphorylation status, we further examined whether CPX alters Cdc25A phosphorylation. The results showed that CPX treatment increased the phosphorylation of Cdc25A (S76 and S82), but only Cdc25A-S82A mutant was resistant to CPX-induced degradation. Furthermore, ectopic expression of Cdc25A-S82A partially conferred resistance to CPX inhibition of cell proliferation. Therefore, our findings indicate that CPX inhibits cell proliferation at least in part by promoting Cdc25A degradation.
Collapse
|
17
|
Abstract
The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks Laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Hergovich A. The Roles of NDR Protein Kinases in Hippo Signalling. Genes (Basel) 2016; 7:genes7050021. [PMID: 27213455 PMCID: PMC4880841 DOI: 10.3390/genes7050021] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022] Open
Abstract
The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling.
Collapse
Affiliation(s)
- Alexander Hergovich
- Cancer Institute, University College London, Paul O'Gorman building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Li NA, Wang H, Zhang J, Zhao E. Knockdown of hypoxia inducible factor-2α inhibits cell invasion via the downregulation of MMP-2 expression in breast cancer cells. Oncol Lett 2016; 11:3743-3748. [PMID: 27313686 DOI: 10.3892/ol.2016.4471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia inducible factors (HIFs) are important regulatory molecules of the intracellular oxygen-signaling pathway. The role of HIF-1α has been confirmed in breast carcinoma; however, little is understood concerning the function of HIF-2α. The present study treated human breast adenocarcinoma MCF-7 cells with the HIF activator cobalt chloride, and transfected HIF-2α small interfering RNAs (siRNAs) into MCF-7 cells to suppress HIF-2α expression. The siRNAs significantly reduced the levels of HIF-2α and matrix metalloproteinase (MMP)-2 in the treated MCF-7 cells. An invasion assay demonstrated that the siRNAs targeting HIF-2α inhibited the invasion potency of the cells. The present study concludes that loss of HIF-2α may be associated with a decreased risk for the progression of human breast cancer, due to the downregulation of the expression of MMP-2.
Collapse
Affiliation(s)
- N A Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxing Wang
- Department of Clinical Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jie Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Erchen Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|