1
|
Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne) 2018; 9:245. [PMID: 29892262 PMCID: PMC5985746 DOI: 10.3389/fendo.2018.00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| | - Galina Karashchuk
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | | | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, Brussels, Belgium
- Department of Stem Cell Research Novo Nordisk A/S, Måløv, Denmark
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| |
Collapse
|
2
|
IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718. PLoS One 2017; 12:e0178885. [PMID: 28570711 PMCID: PMC5453582 DOI: 10.1371/journal.pone.0178885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
Methods Alanine scan of insulin receptor (IR)-B exon 11 and site-directed mutagenesis of amino acid 718 in human IR-A and IR-B were performed. Ligand affinities to wild type and mutated receptors were studied by displacement of radioactive insulin in binding assay on secreted soluble midi receptors or solubilized semi-purified full length receptors stably expressed in Baby Hamster Kidney cells. Phosphorylation of IR in response to insulin, IGF1 and IGF2 was measured using ELISA. Results Insulin, insulin detemir and insulin glargine maximally showed two fold differences in affinity for human IR-A and IR-B, but IGF1 and IGF2 had up to 10 fold preference for IR-A. Alanine scan of exon 11 revealed that position 718 is important for low IGF1 affinity to IR-B. Mutational analysis of amino acid residue 718 in IR-A and IR-B demonstrated that charge is important for IGF1 and IGF2 affinity but not important for insulin affinity. The affinity of IGF1 and IGF2 for the mutant IR-A P718K was comparable to the wild type IR-B whereas the affinity of IGF1 and IGF2 for the mutant IR-B K718P was comparable to the wild type IR-A. Changes in affinity were also reflected in the IR activation pattern. Conclusion Mutating position 718 in human IR-B to the proline found at position 718 in human IR-A increased IGF1 and IGF2 affinity to a level comparable to IR-A and mutating position 718 in IR-A to the lysine found at position 718 in IR-B decreased IGF1 and IGF2 affinity to a level comparable to IR-B, whereas a negatively charged glutamate did not. These changes in the affinities were also reflected in the IR phosphorylation pattern, meaning that position 718 is important for both affinity and activation of the receptor. It should be emphasized that none of the mutations affected insulin affinity, indicating that the mutations did not alter the overall receptor structure and that the effect is ligand specific.
Collapse
|
3
|
Cieniewicz AM, Kirchner T, Hinke SA, Nanjunda R, D'Aquino K, Boayke K, Cooper PR, Perkinson R, Chiu ML, Jarantow S, Johnson DL, Whaley JM, Lacy ER, Lingham RB, Liang Y, Kihm AJ. Novel Monoclonal Antibody Is an Allosteric Insulin Receptor Antagonist That Induces Insulin Resistance. Diabetes 2017; 66:206-217. [PMID: 27797911 DOI: 10.2337/db16-0633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022]
Abstract
A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance. IRAB-B binds to the IR with nanomolar affinity and in the presence of insulin efficiently blocks receptor phosphorylation within minutes and is sustained for at least 3 days in vitro. We further confirm that IRAB-B antagonizes downstream signaling and metabolic function. In mice, a single dose of IRAB-B induces rapid onset of hyperglycemia within 6 h, and severe hyperglycemia persists for 2 weeks. IRAB-B hyperglycemia is normalized in mice treated with exendin-4, suggesting that this model can be effectively treated with a GLP-1 receptor agonist. Finally, a comparison of IRAB-B with the IR antagonist S961 shows distinct antagonism in vitro and in vivo. IRAB-B appears to be a powerful tool to generate both acute and chronic insulin resistance in mammalian models to elucidate diabetic pathogenesis and evaluate therapeutics.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Thomas Kirchner
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Simon A Hinke
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Rupesh Nanjunda
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Katharine D'Aquino
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Ken Boayke
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Philip R Cooper
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Robert Perkinson
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Mark L Chiu
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Stephen Jarantow
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Dana L Johnson
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Jean M Whaley
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Eilyn R Lacy
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Russell B Lingham
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Yin Liang
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development, Spring House, PA
| | - Anthony J Kihm
- Biologics Research, Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development, Spring House, PA
| |
Collapse
|