1
|
Ye Q, Wang J, Ducatman B, Raese RA, Rogers JL, Wan YW, Dong C, Padden L, Pugacheva EN, Qian Y, Guo NL. Expression-Based Diagnosis, Treatment Selection, and Drug Development for Breast Cancer. Int J Mol Sci 2023; 24:10561. [PMID: 37445737 DOI: 10.3390/ijms241310561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Jiajia Wang
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Barbara Ducatman
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
| | - Rebecca A Raese
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Jillian L Rogers
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ying-Wooi Wan
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Chunlin Dong
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Lindsay Padden
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Elena N Pugacheva
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiation Oncology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Nancy Lan Guo
- West Virginia University Cancer Institute/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161:114460. [PMID: 36870282 DOI: 10.1016/j.biopha.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.
Collapse
|
3
|
Wang S, Zhang X, Ning H, Dong S, Wang G, Sun R. B7 homolog 3 induces lung metastasis of breast cancer through Raf/MEK/ERK axis. Breast Cancer Res Treat 2022; 193:405-416. [PMID: 35312883 DOI: 10.1007/s10549-022-06520-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE The essential action of B7 homolog 3 (B7-H3) in different diseases and cancers has been documented. We here focused on its role in breast cancer through the Raf/MEK/ERK axis regarding lung metastasis. METHODS Expression pattern of B7-H3 was determined in breast cancer tissues and cells with its correlation with prognosis analyzed. Then, through transfection of lentivirus vector expressing B7-H3-shRNA, overexpression vector of B7-H3 (B7-H3-LV), U0126 (small molecule inhibitor of MEK), or PD98059 (small molecule inhibitor of ERK), the in vitro and in vivo effects of B7-H3 in breast cancer cell biological processes, and lung metastasis were analyzed in relation to the Raf/MEK/ERK axis. RESULTS We discovered elevated B7-H3 in breast cancer and its elevation associated with poor prognosis. B7-H3 promoted the malignant properties of breast cancer cells, accompanied with increased N-cadherin and vimentin and reduced E-cadherin. Additionally, overexpression of B7-H3 accelerated the lung metastasis in breast cancer in vivo. All the above promoting action of B7-H3 was achieved through activation of the Raf/MEK/ERK signaling pathway. CONCLUSION Taken together, B7-H3 can promote lung metastasis in breast cancer through activation of the Raf/MEK/ERK axis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China
| | - Xinyan Zhang
- Department of Intervention, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, China
| | - Houfa Ning
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Senyi Dong
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Guangzhi Wang
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China.
| | - Ruimei Sun
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China.
| |
Collapse
|
4
|
Santos JMO, Peixoto da Silva S, Bastos MMSM, Oliveira PA, Gil da Costa RM, Medeiros R. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches. J Physiol Biochem 2022; 78:439-455. [PMID: 35298788 DOI: 10.1007/s13105-021-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Cachexia is associated with poor prognosis in cancer patients, and inflammation is one of its main drive factors. MicroRNAs have recently emerged as important players in cancer cachexia and are involved in reciprocal regulation networks with pro-inflammatory signaling pathways. We hypothesize that inflammation-driven cancer cachexia is regulated by specific microRNAs. The aim of this study is to explore the expression and role of inflammation-related microRNAs in muscle wasting. HPV16-transgenic mice develop systemic inflammation and muscle wasting and are a model for cancer cachexia. We employed gastrocnemius muscle samples from these mice to study the expression of microRNAs. Bioinformatic tools were then used to explore their potential role in muscle wasting. Among the microRNAs studied, miR-223-3p (p = 0.004), let-7b-5p (p = 0.034), miR-21a-5p (p = 0.034), miR-150-5p (p = 0.027), and miR-155-5p (p = 0.011) were significantly upregulated in muscles from cachectic mice. In silico analysis showed that these microRNAs participate in several processes related to muscle wasting, including muscle structure development and regulation of the MAPK pathway. When analyzing protein-protein interactions (PPI)-networks, two major clusters and the top 10 hubs were obtained. From the top 10, Kras (p = 0.050) and Ccdn1 (p = 0.009) were downregulated in cachectic muscles, as well as Map2k3 (p = 0.007). These results show that miR-223-3p, let-7b-5p, miR-21a-5p, miR-150-5p, and miR-155-5p, play a role in muscle wasting in HPV16 transgenic mice, possible through regulating the MAPK cascades. Future experimental studies are required to validate our in silico analysis, and to explore the usefulness of these microRNAs and MAPK signaling as new potential biomarkers or therapy targets for cancer cachexia.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Margarida M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, 4200-465, Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, 4200-465, Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
- Research Department of the Portuguese League Against Cancer - Regional Nucleus of the North (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), 4200-177, Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
5
|
Zhou X, Ying C, Hu B, Zhang Y, Gan T, Zhu Y, Wang N, Li A, Song Y. Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C-terminal AAs 2-5 to mitogen-activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3-MKK3-p38 module assembly. Aging Cell 2022; 21:e13543. [PMID: 35080104 PMCID: PMC8844116 DOI: 10.1111/acel.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).
Collapse
Affiliation(s)
- Xiao‐Yan Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| | - Chang‐Jiang Ying
- Department of Endocrinology Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yu‐Sheng Zhang
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Tian Gan
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Yan‐Dong Zhu
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - An‐An Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yuan‐Jian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| |
Collapse
|
6
|
Dissection of the MKK3 Functions in Human Cancer: A Double-Edged Sword? Cancers (Basel) 2022; 14:cancers14030483. [PMID: 35158751 PMCID: PMC8833818 DOI: 10.3390/cancers14030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The role played by MKK3 in human cancer is controversial. MKK3 is an evolutionarily conserved protein kinase that activates in response to a variety of stimuli. Phosphorylates, specifically the p38MAPK family proteins, contribute to the regulation of a plethora of cellular processes such as proliferation, differentiation, apoptosis, invasion, and cell migration. Genes in carcinogenesis are classified as oncogenes and tumor suppressors; however, a clear distinction is not always easily made as it depends on the cell context and tissue specificity. The aim of this study is the examination of the potential contribution of MKK3 in cancer through a systematic analysis of the recent literature. The overall results reveal a complex scenario of MKK3’s involvement in cancer. The oncogenic functions of MKK3 were univocally documented in several solid tumors, such as colorectal, prostate cancer, and melanoma, while its tumor-suppressing functions were described in glioblastoma and gastric cancer. Furthermore, a dual role of MKK3 as an oncogene as well as tumor a suppressor has been described in breast, cervical, ovarian, liver, esophageal, and lung cancer. However, overall, more evidence points to its role as an oncogene in these diseases. This review indicates that the oncogenic and tumor-suppressing roles of MKK3 are strictly dependent on the tumor type and further suggests that MKK3 could represent an efficient putative molecular target that requires contextualization within a specific tumor type in order to adequately evaluate its potential effectiveness in designing novel anticancer therapies.
Collapse
|
7
|
Huth HW, Castro-Gomes T, de Goes AM, Ropert C. Translocation of intracellular CD24 constitutes a triggering event for drug resistance in breast cancer. Sci Rep 2021; 11:17077. [PMID: 34426608 PMCID: PMC8382710 DOI: 10.1038/s41598-021-96449-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023] Open
Abstract
The capacity of tumor cells to shift dynamically between different states could be responsible for chemoresistance and has been commonly linked to the acquisition of stem cell properties. Here, we have evaluated the phenotype switching associated with drug resistance in breast cancer cell lines and cell lineage obtained from Brazilian patients. We have highlighted the role of the cancer stem cell marker CD24 in the dynamics of cell plasticity and the acquirement of drug resistance. We showed that the translocation of CD24 from cytosol to cell membrane is a triggering event for the phenotype change of breast tumor cells exposed to drug stress. Here, we provide evidence that the phenotype switching is due to the presence of a cytosolic pool of CD24. Importantly, the cellular localization of CD24 was correlated with the changes in the dynamics of p38 MAPK activation. A strong and continuous phosphorylation of the p38 MAPK led to the overexpression of Bcl-2 after treatment in persistent cells presenting high density of CD24 on cell membrane. This phenotype enabled the cells to enter in slow-down of cell cycle, after which several weeks later, the dormant cells proliferated again. Importantly, the use of a p38 activity inhibitor sensitized cells to drug treatment and avoided chemoresistance.
Collapse
Affiliation(s)
- Hugo Werner Huth
- Departamento de Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-910, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-910, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-910, Brazil
| | - Catherine Ropert
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| |
Collapse
|
8
|
Jiang D, Xu J, Liu S, Nasser MI, Wei W, Mao T, Liu X, Zou X, Li J, Li X. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways. Oncol Lett 2021; 22:631. [PMID: 34267823 PMCID: PMC8258625 DOI: 10.3892/ol.2021.12892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed cancers amongst women; however, there is currently no effective treatment. Natural compounds are considered to contribute to cancer prevention and have a pivotal role in modulating apoptosis. Rosmanol is a phenolic diterpene compound with antioxidant and anti-inflammatory properties. In the present study, the effects of Rosmanol on breast cancer cell proliferation/apoptosis were investigated, and it was demonstrated that it inhibited the proliferation of MCF-7 and MDA-MB 231 cells but did not have a significant effect on normal human breast MCF-10A cells. In addition, the apoptotic process was accelerated by Rosmanol, through mitochondrial pathways and reactive oxygen species (ROS) production caused by DNA damage, which function further demonstrated by the attenuation and addition of the ROS inhibitor, N-acetyl-cysteine. It was also demonstrated that Rosmanol accelerated cell apoptosis, and arrested breast cancer cells in the S phase. Moreover, Rosmanol inhibited proliferation and promoted apoptosis of cancer cells via the inhibition of ERK and STAT3 signals, attributable to the increase in p-p38, the overexpression of protein inhibitor of activated STAT3, and the decrease in PI3K/AKT, ERK and JAK2/STAT3.
Collapse
Affiliation(s)
- Dongjun Jiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jiaqi Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Sitong Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Moussa Ide Nasser
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Tianjiao Mao
- Department of Stomatogy, Affiliated Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xintong Liu
- Bioprobe Application Research Unit, Chemical Biology Department, RIKEN-Max Planck Joint Research Division, RIkagaku KENkyusho/Institute of Physical and Chemical Research (RIKEN) Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Xiaopan Zou
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jiang Li
- Department of Stomatogy, Affiliated Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
9
|
Ren LX, Qi JC, Zhao AN, Shi B, Zhang H, Wang DD, Yang Z. Myc-associated zinc-finger protein promotes clear cell renal cell carcinoma progression through transcriptional activation of the MAP2K2-dependent ERK pathway. Cancer Cell Int 2021; 21:323. [PMID: 34183010 PMCID: PMC8240279 DOI: 10.1186/s12935-021-02020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background The dysfunction of myc-related zinc finger protein (MAZ) has been proven to contribute to tumorigenesis and development of multiple cancer types. However, the biological roles and clinical significance of MAZ in clear cell renal carcinoma (ccRCC) remain unclear. Methods MAZ expression was examined in ccRCC and normal kidney tissue by quantitative real-time PCR and Western blot. Statistical analysis was used to evaluate the clinical correlation between MAZ expression and clinicopathological characteristics to determine the relationship between MAZ expression and the survival of ccRCC patients. The biological roles of MAZ in cells were investigated in vitro using MTT and colony assays. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to investigate the relationship between MAZ and its potential downstream signaling molecules. Results MAZ expression is elevated in ccRCC tissues, and higher levels of MAZ were correlated with poor survival of patients with ccRCC. MAZ upregulation elevates the proliferation ability of ccRCC cells in vitro, whereas silencing MAZ represses this ability. Our results further reveal that MAZ promotes cell growth, which is dependent on ERK signaling. Importantly, we found that MAZ positively regulates MAP2K2 expression in ccRCC cells. Mechanistically, MAZ binds to the MAP2K2 promoter and increases MAP2K2 transcription. Furthermore, MAP2K2 levels were shown to be increased in ccRCC tissues and to be associated with a poor prognosis of ccRCC patients. MAP2K2 upregulation activates the ERK signaling pathway and promotes ccRCC progression. Conclusion These results reveal that the MAZ/MAP2K2/ERK signaling axis plays a crucial role in promoting ccRCC progression, which suggests the potential therapeutic utility of MAZ in ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02020-9.
Collapse
Affiliation(s)
- Li-Xin Ren
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
10
|
Pazopanib and Trametinib as a Synergistic Strategy against Osteosarcoma: Preclinical Activity and Molecular Insights. Cancers (Basel) 2020; 12:cancers12061519. [PMID: 32531992 PMCID: PMC7352822 DOI: 10.3390/cancers12061519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) inhibitors’ activity in advanced osteosarcoma is significant but short-lived. To prevent or at least delay drug resistance, we explored a vertical inhibition by combining drugs acting at different levels of the RTK pathways (pazopanib + trametinib). We studied pazopanib + trametinib antitumor activity both in vitro and in vivo (MNNG-HOS and KHOS xenografts in NOD/SCID mice) investigating the molecular mechanisms and potential escapes. The involvement of MAPK-PI3K pathways was validated by Nanostring technology, western blot and by silencing/overexpression experiments. Pazopanib targets were expressed on seven osteosarcoma cell lines and their pathways were activated. Pazopanib + trametinib exhibited synergistic antitumor activity by inducing apoptosis and inhibiting ERK1/2 and Akt. In vivo antitumor activity was shown in osteosarcoma-bearing mice. The drug combination significantly down-modulated RTK Ephrin Type-A Receptor 2 (EphA2) and Interleukin-7 Receptor (IL-7R), whereas induced mitogen-activated protein-kinase kinase (MAPKK) MEK6. EphA2 silencing significantly reduced osteosarcoma cell proliferation and migration, while impeding MEK6 up-regulation in the treated cells significantly increased the antitumor effect of the studied drugs. Moreover, the up-regulation of MEK6 reduced combination activity. Pazopanib + trametinib demonstrated synergistic antitumor effects in osteosarcoma models through ERK and Akt inhibition and EphA2 and IL-7R down-modulation. MEK6 up-regulation might evoke escaping mechanism.
Collapse
|
11
|
Stramucci L, Pranteda A, Stravato A, Amoreo CA, Pennetti A, Diodoro MG, Bartolazzi A, Milella M, Bossi G. MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer. Cell Death Dis 2019; 10:842. [PMID: 31695024 PMCID: PMC6834673 DOI: 10.1038/s41419-019-2083-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and understanding its underlying molecular mechanisms is crucial for the development of therapeutic strategies. The mitogen-activated protein kinase-kinase 3 (MKK3) is a specific activator of p38 MAP kinases (p38 MAPKs), which contributes to the regulation of several cellular functions, such as proliferation, differentiation, apoptosis as well as response to drugs. At present, the exact MKK3/p38 MAPK pathway contribution in cancer is heavily debated because of its pleiotropic function. In this work, we retrospectively explored the prognostic and pathobiologic relevance of MKK3 in a cohort of CRC patients and assessed MKK3 molecular functions in a panel of CRC lines and colonocytes primary cultures. We found increased MKK3 levels in late-stage CRC patients which correlated with shorter overall survival. Herein, we report that the MKK3 targeting by inducible RNA interference univocally exerts antitumor effects in CRC lines but not in primary colonocytes. While MKK3 depletion per se affects growth and survival by induction of sustained autophagy and death in some CRC lines, it potentiates response to chemotherapeutic drug 5-fluorouracil (5-FU) in all of the tested CRC lines in vitro. Here, we demonstrate for the first time that in CRC the MKK3 specifically activates p38delta MAPK isoform to sustain prosurvival signaling and that such effect is exacerbated upon 5-FU challenge. Indeed, p38delta MAPK silencing recapitulates MKK3 depletion effects in CRC cells in vitro and in vivo. Overall, our data identified a molecular mechanism through which MKK3 supports proliferation and survival signaling in CRC, further supporting MKK3 as a novel and extremely attractive therapeutic target for the development of promising strategies for the management of CRC patients.
Collapse
Affiliation(s)
- Lorenzo Stramucci
- Laboratory of Medical Physics and Expert Systems, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy.,Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Angelina Pranteda
- Laboratory of Medical Physics and Expert Systems, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy.,Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Arianna Stravato
- Laboratory of Medical Physics and Expert Systems, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy.,Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Azzurra Amoreo
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Annarita Pennetti
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | | | - Michele Milella
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy.,Oncology Section, Department of Medicine, University of Verona School of Medicine/Verona University Hospital Trust, 37134 Verona, Italy
| | - Gianluca Bossi
- Laboratory of Medical Physics and Expert Systems, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy. .,Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
12
|
Lee HR, Lee J, Kim HJ. Differential effects of MEK inhibitors on rat neural stem cell differentiation: Repressive roles of MEK2 in neurogenesis and induction of astrocytogenesis by PD98059. Pharmacol Res 2019; 149:104466. [PMID: 31562895 DOI: 10.1016/j.phrs.2019.104466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
Abstract
Neural stem cells (NSCs) proliferate and differentiate into neurons and glia depending on the culture environment. However, the underlying mechanisms determining the fate of NSCs are not fully understood. Growth factors facilitate NSC proliferation through mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and MAPK activation, and NSCs differentiate into neurons, astrocytes, or oligodendrocytes when mitogens are withdrawn from the culture media. Here, we aimed to identify the effects and roles of MEK signaling on the determination of NSC fate. MEK inhibitors, U0126, SL327, and PD98059, had differential effects on NSC differentiation. U0126 and SL327, which are known to inhibit MEK1 and MEK2, induced neuronal differentiation, whereas PD98059, which is reported to preferentially inhibit MEK1 at higher concentrations, increased astrocytogenesis. Knockdown of MEK2 using small interfering RNA increased neurogenesis and over-expression of wild type (WT) MEK2 inhibited neurogenesis, suggesting a repressive role of MEK2 in neuronal differentiation. The chemical structure of PD98059 appears to be important for induction of astrocytogenesis because not only PD98059 (2'-amino-3'-methoxyflavone) but also its chemical structural mimetic, 3'-methoxyflavone, enhanced astrocytogenesis. Therefore, in our study, we suggest that MEK inhibitors have distinct functions in determining NSC fate. Inhibition of MEK2 is important for induction of neurogenesis in NSCs. U0126 and SL327 increase neurogenesis through MEK2 inhibition, whereas PD98059 induced astrocytogenesis in NSCs, which is mediated by the chemical structure, particularly the 3'-methoxy group rather than its renowned MEK1 inhibition.
Collapse
Affiliation(s)
- Ha-Rim Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhou M, Yu X, Jing Z, Wu W, Lu C. Overexpression of microRNA‑21 inhibits the growth and metastasis of melanoma cells by targeting MKK3. Mol Med Rep 2019; 20:1797-1807. [PMID: 31257538 PMCID: PMC6625455 DOI: 10.3892/mmr.2019.10408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma is an aggressive skin carcinoma with poor prognosis, and is prevalent worldwide. It was demonstrated that microRNA (miR)‑21 and mitogen‑activated protein kinase kinase 3 (MKK3) both participated in the occurrence and development of various tumors; however, their detailed roles in the progression of melanoma remain unclear. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analyses were conducted to examine the expression levels of miR‑21 and MKK3 in clinical specimens of patients with melanoma and melanoma cell lines. A dual‑luciferase reporter assay was performed to verify the target interaction between miR‑21 and MKK3. The mRNA and protein expressions of MKK3 were measured using RT‑qPCR and western blot analysis, respectively, following transfection with miR‑21 mimics and inhibitor. Subsequently, Cell Counting Kit‑8 and colony formation assays, and flow cytometry were conducted to assess the effects of miR‑21 and MKK3 on the cell growth of melanoma. Cell migration and invasion experiments were performed to evaluate the effects of miR‑21 and MKK3 on the cell metastasis of melanoma. It was revealed that MKK3 was upregulated, and miR‑21 was downregulated in patients with melanoma and melanoma cell lines. MKK3 was demonstrated to be a direct target of miR‑21. Furthermore, it was demonstrated that upregulated miR‑21 expression and downregulated MKK3 expression suppressed cell proliferation and colony formation, promoted apoptosis, delayed the cell cycle, and inhibited cell migration and invasion. The present findings suggested that miR‑21 could inhibit the cell growth and metastasis of melanoma by negatively regulating MKK3.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University, Qingdao, Shandong 266000, P.R. China
| | - Xiaoqian Yu
- Department of Dermatology, Qingdao Hiser Medical Group, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong 266032, P.R. China
| | - Zhenhai Jing
- Department of Oncology, Qingdao Hiser Medical Group, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong 266032, P.R. China
| | - Wei Wu
- College of Food Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266179, P.R. China
| | - Chenglong Lu
- Department of Emergency, Qilu Hospital of Shandong University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
14
|
Zhou J, Ma W, Wang X, Liu H, Miao Y, Wang J, Du P, Chen Y, Zhang Y, Liu Z. Matrine Suppresses Reactive Oxygen Species (ROS)-Mediated MKKs/p38-Induced Inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-Stimulated Macrophages. Med Sci Monit 2019; 25:4130-4136. [PMID: 31156213 PMCID: PMC6561390 DOI: 10.12659/msm.917151] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The objective of this study was to study the anti-inflammatory effect and possibly involved molecular mechanisms of matrine on oxidized low-density lipoprotein (ox-LDL)-exposed macrophages. Material/Methods Cultured human macrophages (THP-1 cell line) were exposed to ox-LDL at final concentrations of 0, 25, 50, and 100 μg/mL. Several cells were then treated with matrine at serial diluted concentrations. 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) staining was used to evaluate reactive oxygen species (ROS) production; a colorimetric method was used to determine the cellular antioxidant capacity; production of pro-inflammatory cytokines interleukin (IL)18 and tumor necrosis factor (TNF)α were determined by enzyme-linked immunosorbent assay (ELISA); and immunoblot assay was used to assess the relative protein phosphorylation and expression. Results ox-LDL exposure significantly elevated intracellular ROS level and supernatant IL18 and TNFα concentrations, but impaired total antioxidant capacity (TAC) of macrophages. The relative phosphorylations of MAPK kinase kinases (MKK)6, MKK3, and p38 mitogen-activated protein kinases (MAPK) were increased by ox-LDL exposure. The expression levels of IL18 and TNFα were also increased in ox-LDL-treated macrophages. The matrine treatment reduced intracellular ROS level and supernatant IL18 and TNFα concentrations and increased TAC in a concentration- dependent manner. The relative phosphorylations of MKK6, MKK3, and p38 MAPK were reduced after matrine administration. Moreover, the expression levels of IL18 and TNFα were also decreased by matrine treatment, in a concentration-dependent manner. Conclusions ox-LDL increases inflammatory response in macrophages by activating the ROS-mediated MKKs/p38 MAPK-induced inflammatory signaling pathway. Matrine suppresses ox-LDL-induced inflammatory by inhibiting the MKKs/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Junli Zhou
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Wangxia Ma
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Xincheng Wang
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Hongbo Liu
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Youliang Miao
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Juanli Wang
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Peng Du
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Yani Chen
- Department of Cardiology, Zhouzhi County People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
15
|
Nucleus, Cytoskeleton, and Mitogen-Activated Protein Kinase p38 Dynamics during In Vitro Maturation of Porcine Oocytes. Animals (Basel) 2019; 9:ani9040163. [PMID: 31013909 PMCID: PMC6523277 DOI: 10.3390/ani9040163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The mitogen-activated kinase (MAPK) p38, a member of the MAPK subfamily, is conserved in all mammalian cells and plays important roles in response to various physiologic cues, including mitogens and heat shock. In the present study, MAPK p38 protein expression in porcine oocytes was analyzed during in vitro maturation (IVM) by Western blotting and immunocytochemistry. The levels of p-p38 or activated p38 and p38 expression were at the lowest in the germinal vesicle (GV) stage oocyte, gradually rising at the germinal vesicle breakdown (GVBD) and then reaching a plateau throughout the IVM culture (p < 0.05). Similarly, the expression level of total p38 was also lower in the GV oocyte than in the oocyte of other meiotic stages and uprising after GVBD and remained high until the metaphase III (MII) stage (p < 0.05). In the GV stage, phosphorylated p38 (p-p38) was initially detectable in the ooplasm and subsequently became clear around the nucleus and localized in the ooplasm at GVBD (18 h post-culture). During the metaphase I (MI) and metaphase II (MII) stages, p-p38 was evenly distributed throughout the ooplasm after IVM for 30 or 42 h. We found that the subcellular localization increased in p-p38 expression throughout oocyte maturation (p < 0.05) and that dynamic reorganization of the cytoskeleton, including microfilaments and microtubules, was progressively changed during the course of meiotic maturation which was likely to be associated with the activation or networking of p38 with other proteins in supporting oocyte development. In conclusion, the alteration of p38 activation is essential for the regulation of porcine oocyte maturation, accompanied by the progressive reorganization and redistribution of the cytoskeleton and MAPK p38, respectively, in the ooplasm.
Collapse
|
16
|
Xiang Q, Tang J, Luo Q, Xue J, Tao Y, Jiang H, Tian J, Fan C. In vitro study of anti-ER positive breast cancer effect and mechanism of 1,2,3,4-6-pentyl-O-galloyl-beta-d-glucose (PGG). Biomed Pharmacother 2019; 111:813-820. [DOI: 10.1016/j.biopha.2018.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 01/16/2023] Open
|
17
|
Park SB, Chung CK, Gonzalez E, Yoo C. Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks. J Bone Metab 2018; 25:251-266. [PMID: 30574470 PMCID: PMC6288606 DOI: 10.11005/jbm.2018.25.4.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.
Collapse
Affiliation(s)
- Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Clinical Research Institute, Seoul, Korea
| | - Efrain Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
18
|
Quantitative proteome analysis identifies MAP2K6 as potential regulator of LIFR-induced radioresistance in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2018; 505:274-281. [PMID: 30245131 DOI: 10.1016/j.bbrc.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022]
|
19
|
Resveratrol-Linoleate protects from exacerbated endothelial permeability via a drastic inhibition of the MMP-9 activity. Biosci Rep 2018; 38:BSR20171712. [PMID: 29921577 PMCID: PMC6066651 DOI: 10.1042/bsr20171712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
Gelatinolytic matrix metalloproteinases (MMP-2, -9) play a critical role not only in mammals physiology but also during inflammation and healing processes. The natural stilbenoid, resveratrol (RES), exhibits potent antioxidant effects, in a hormetic mode of action, and is known to inhibit MMP-9. However, RES administration exhibits major issues, including poor bioavailability and water solubility, hampering its potential therapeutic effect in vivo. In the present study, we synthesized and evaluated five novel RES–lipid conjugates to increase their cell membrane penetration and improve their bioavailability. The best in vitro MMP-9 inhibitory activity of RES–lipids conjugates was observed with RES-linoleic acid (LA) (5 µM), when dissolved in a natural deep eutectic solvent (NADES), composed of an equimolar content of 1,2-propanediol:choline chloride (ChCl):water. The inhibition of MMP-9 expression by RES-LA in activated THP-1 monocytes, was, at least due to the deactivation of ERK1/2 and JNK1/2 MAP kinase signaling pathways. Moreover, RES-LA exhibited a strong effect protecting the TNF-α-induced exacerbated permeability in an HUVEC in vitro monolayer (by 81%) via the integrity protection of intercellular junction proteins from the MMP-9 activity. This effect was confirmed by using several complementary approaches including, the real-time monitoring of trans-endothelial electric resistance (TEER), the Transwell HUVEC permeability level, the microscopic examination of the platelet endothelial cell adhesion molecule-1 (CD31/PECAM-1) integrity as well as the fluorescence in intercellular spaces. Consequently, following this strong in vitro proof-of-concept, there is a need to test this promising RES–lipid derivative compound to control the pathological endothelial permeability in vivo.
Collapse
|
20
|
Stramucci L, Pranteda A, Bossi G. Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers (Basel) 2018; 10:cancers10050131. [PMID: 29751559 PMCID: PMC5977104 DOI: 10.3390/cancers10050131] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
TP53 is universally recognized as a pivotal protein in cell-cycle fate and apoptotic induction and, unsurprisingly, it is one of the most commonly hijacked control mechanisms in cancer. Recently, the kinase MKK3 emerged as a potential therapeutic target in different types of solid tumor being linked to mutant p53 gain-of-function. In this review, we summarize the delicate relationship among p53 mutational status, MKK3/MKK6 and the downstream activated master kinase p38MAPK, dissecting a finely-tuned crosstalk, in a potentially cell-context dependent scenario that urges towards a deeper characterization of the different molecular players involved in this signaling cascade and their interactions.
Collapse
Affiliation(s)
- Lorenzo Stramucci
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Angelina Pranteda
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Gianluca Bossi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
21
|
Holzberg M, Boergeling Y, Schräder T, Ludwig S, Ehrhardt C. Vemurafenib Limits Influenza A Virus Propagation by Targeting Multiple Signaling Pathways. Front Microbiol 2017; 8:2426. [PMID: 29312159 PMCID: PMC5735105 DOI: 10.3389/fmicb.2017.02426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe global pandemic outbreaks. The currently licensed antiviral drugs are not very effective and prone to viral resistance. Thus, novel effective and broadly active drugs are urgently needed. We have identified the cellular Raf/MEK/ERK signaling cascade as crucial for IAV replication and suitable target for an antiviral intervention. Since this signaling cascade is aberrantly activated in many human cancers, several clinically approved inhibitors of Raf and MEK are now available. Here we explored the anti-IAV action of the licensed B-RafV600E inhibitor Vemurafenib. Treatment of B-RafWT cells with Vemurafenib induced a hyperactivation of the Raf/MEK/ERK cascade rather than inhibiting its activation upon IAV infection. Despite this hyperactivation, which has also been confirmed by others, Vemurafenib still strongly limited IAV-induced activation of other signaling cascades especially of p38 and JNK mitogen-activated protein kinase (MAPK) pathways. Most interestingly, Vemurafenib inhibited virus-induced apoptosis via impaired expression of apoptosis-inducing cytokines and led to hampered viral protein expression most likely due to the decreased activation of p38 and JNK MAPK. These multiple actions resulted in a profound and broadly active inhibition of viral replication, up to a titer reduction of three orders of a magnitude. Thus, while Vemurafenib did not act similar to MEK inhibitors, it displays strong antiviral properties via a distinct and multi-target mode of action.
Collapse
Affiliation(s)
- Magdalena Holzberg
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Tobias Schräder
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
22
|
Yang J, Zhu S, Lin G, Song C, He Z. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells. Cell Biol Int 2017. [DOI: 10.1002/cbin.10806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jing Yang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- Synergistic Innovation Center for Food Safety and Nutrition; Jiangnan University; Wuxi 214122 China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- Synergistic Innovation Center for Food Safety and Nutrition; Jiangnan University; Wuxi 214122 China
| | - Guangxiao Lin
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- Synergistic Innovation Center for Food Safety and Nutrition; Jiangnan University; Wuxi 214122 China
| | - Ci Song
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- Synergistic Innovation Center for Food Safety and Nutrition; Jiangnan University; Wuxi 214122 China
| | - Zhao He
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- Synergistic Innovation Center for Food Safety and Nutrition; Jiangnan University; Wuxi 214122 China
- School of Medicine; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
23
|
Huth HW, Santos DM, Gravina HD, Resende JM, Goes AM, de Lima ME, Ropert C. Upregulation of p38 pathway accelerates proliferation and migration of MDA-MB-231 breast cancer cells. Oncol Rep 2017; 37:2497-2505. [PMID: 28260101 DOI: 10.3892/or.2017.5452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor cells capture the signaling pathways used by normal tissue to promote their own survival and dissemination and among them, the NF-κB and MAPK pathways (ERK, JNK and p38). MAPK activation has ambiguous effects on tumor cell fate depending on cell type, cancer stage and the engaged MAPK isoforms. A synthetic peptide named LyeTx II, derived from the venom of the Brazilian spider Lycosa erythrognatha, was capable of increasing MDA-MB-231 aggressive breast cancer cell proliferation as indicated by MTT and BrdU (5-bromo-2'-deoxyuridine) incorporation assay and cell migration. A correlation has been established between the accelerated proliferation and migration observed in the presence of LyeTx II and the upregulation of p38 MAPK phosphorylation. The use of the selective inhibitor of p38α/β (SB203580) abrogated the peptide effect in MDA-MB-231 cells. Besides, an augment of the canonical NF-κB pathway activation considered as crucial in cancer progression was noted after cell incubation with LyeTx II. Importantly, activation of p38 and NF-κB pathways was dependent on TAK1 activity. Together, these data suggest that TAK1-p38 pathway may represent an interesting target for treatment of aggressive breast cancers.
Collapse
Affiliation(s)
- Hugo W Huth
- Department of Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Daniel M Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Humberto D Gravina
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Jarbas M Resende
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Alfredo M Goes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Maria Elena de Lima
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | - Catherine Ropert
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| |
Collapse
|